

Identifying Single Retro Tracks With A 2 kHz SLR System:

Simulations and Actual Results

D. Arnold, G. Kirchner, F. Koidl

- Most satellites have more than 1 retro;
- Most times more than 1 retro is seen;
- LAGEOS gives Single Photon-Electrons (max. return rate most times < 15 %)</p>
- LEOs usually give Multi-PE, BUT:
 - **Big Fluctuations in Return Energy;**
 - > Always considerable amount of SPEs;

Topex: Retros

Big ring of retros:

Always multiple retros visible;

Satellite is stabilized; so:

Slow changes of visible retros;

Topex: Sim. Return Pulses

- Vertical axis: 550 to 1188 mm (two-way);
- Laser Pulse: 10 ps, but:
 - 40 ps FWHM assumed to simulate receiver noise;
- 24° rotation of the satellite about the symmetry axis;

Topex: Graz Data

ERS-2, Envisat: Retros

- Satellites are stabilized;
- Slow changes of visible retros;
- ERS and ENVISAT: Identical arrays
- Always 2 retros visible at least;

- Retros; Middle dot is actually 2 retros at same distance;
- Simulated Return Pulse Shape

- O Horizontal axis is from 0° to 360 ° => one full revolution;
- We usually see only a fraction of this full revolution;
- Servical axis is from 46 to 119 mm (73 mm);
- At the mm-level: CoM correction is **NOT CONSTANT !!!**

Envisat: 300 k Returns

• $\sim 1/8$ of simulated full revolution (as in previous image)

• 2^{nd} Track: shows max. offset of up to ~ 2 cm

Solution For NP generation: 2nd track returns omitted

Lageos 1:

- VERY slow rotation only;
- Slow changes of retro visibility;
- Allows detection of tracks of different retro clusters;

Lageos 2:

- Rotates significantly faster;
- Not easy to detect tracks of single retros or retro clusters

LAGEOS: Retro Visibility, Sim. Return Pulse Shapes

o Retros; -- Simulated Return Pulse Shape

LAG-1: Simul. Return Signal

Lageos 1: Multiple tracks

Lageos-1 Pass Night time ~ 500 k Returns Slow rotation $\odot \sim 160 \text{ mm vertical}$ Several tracks NP: Track 1 only 400 k remaining

Other Satellites: GFO

UN-Mark 32097 Points	X-Limits Min∕Max	Y-Limits Min∕Max	XMinMax: PASS RETS	BROOM Points Elimin.			
845. 23							0.120
94 ⁰ 2							
į.							
ें के स							
		in la bailte				4. A. A. A.	
							* i K
с. <u>я́</u>							
3							-0.065
16.0° 33192	GF Pts: RMS ((002914)	24 2 mm: T	1.3° ime Bias:	GF01	CG Range Bias	24.7°

Other Satellites: Jason-1

Even Stella shows it ...

The Graz 2 kHz SLR system resolves:

- single retro tracks;
- and / or tracks of retro clusters on most satellites;
- Seceptions: LaRetC, Champ (?), Panels only on Glonass sats;
- Subset Single PE returns only, due to low energy (400 μJ/shot);
- LEOs: Multi-PEs, but also significant fraction of SPEs;
- NP Generation: Secondary tracks omitted, only nearest retro used;
- Source for CoM corrections at mm-level:
 - Seven with secondary tracks removed:
 - Solution: NOT ALWAYS CONSTANT !
- Solution For stabilized satellites: Chance to increase SLR accuracy !

Be aware ...

... of these things also in YOUR system:

With kHz => We now can show it;
With 10 Hz => You just don't know it

