DESIGN OF LASER RETRO-REFLECTOR ARRAY AND LASER RANGING EXPERIMIENT FOR SHENZHOU-IV SATELLITE

Yang Fumin, Chen Wanzhen, Zhang Zhongping, Chen Juping, Wang Yuanming

Shanghai Astronomical Observatory Chinese Academy of Sciences

- The China's fourth unmanned spacecraft "Shenzhou IV" was launched on December 30, 2002
- One module of the spacecraft returned to earth on January 6, 2003
- The other part, the orbital module, remained in the orbit and carried on some scientific experiment.
- One of the instruments on board was the microwave altimeter for sea level measurement
- A laser retro-reflector array and a GPS receiver onboard for precise orbit determination.

Configuration of LRA

Diameter:
Corner cubes:
Material: Fused quartz Weight:

LRA was designed and manufactured by the Shanghai Observatory

"Shenzhou IV"
Laser Reflector Array

Mechanical Drawing

Calculation of Effective Reflection Area of Shenzhou IV Satellite

1. Calculation for the incidence angle of laser beam with respect to the retro-reflector that has an inclination angle with the normal plane pointing to the Earth's center

Effective area of the retro-reflector

The relation between the incidence angle and the relative effective area is given by:

$$
\square=\frac{2}{\square} \cdot\left(\sin ^{\square 1} \square \square \sqrt{2} \cdot \square \cdot \operatorname{tg} i_{r}\right) \cos i_{0}
$$

where, $\square=\left(1 \square 2 \operatorname{tg}^{2} i_{r}\right)^{\prime 2}, \quad i_{r}=\sin ^{\square 口} \frac{\sin i_{0}}{n}$ 目
ITis relative effective geometric area,
i_{0} is incidence angle of laser beam,
i_{r} is refraction angle of laser beam,
n is index of refraction for retro-reflector, usually the retro-reflector is made of fused quartz ($\mathrm{n}=1.445$). While $i_{0}=0$, then $\boldsymbol{g} \ll=1$.

Three coordinate systems

The unity length vector of the laser beam both in station coordinate system and in geocentric coordinate system is the same:

$$
\vec{L}=\begin{gathered}
\frac{\square}{\square} \cos (e l) \cos (a z) \\
\square \operatorname{los}(e l) \sin (a z) \\
\square \\
\square
\end{gathered}
$$

In geocentric system, the unity length vector of the satellite position is:

$$
\vec{S}=\begin{aligned}
& \frac{\square}{\square} \sin (e) \cos (a z) \square \\
& \square \operatorname{lin}(e) \sin (a z) \\
& \square
\end{aligned}
$$

Here, \mathbf{e} is geocentric angle of satellite $\square S E O$ and can be gotten by :

$$
e=\arcsin \left[\frac{\square}{r_{s}} \square \cos (e l)\right]
$$

Where
\square is the slant distance from the station to the satellite.
r_{s} is geocentric distance of the satellite.

In satellite coordinate system, the normal vector of retro-reflector is:

The transformation from satellite coordinate system to geocentric coordinate system is as follows:

Where $c=\square \arctan [\tan (a z) \square \cos (e)]$

In geocentric coordinate system, the unity length

 vector of the normal of the retro-reflector \vec{N} is:

The incidence angle of laser beam to the reflector is given by:

$$
i=\arccos (\vec{L} \cdot \vec{N})
$$

2. Calculation result of distribution of effective reflection area on Shenzhou-IV LRA

3-D distribution pattern of effective reflection area of LRA

Optical Tests of LRA

1. Test of the surface flatness and divergence of LRA are with ZYGO Interferometer.

Divergence of reflectors are 10-16 arcsec.
2. Relative Reflection Area Measurement
3. Optical Reflectivity Measurement
4. Far Field Diffraction Pattern Measurement

Relative Reflection Area Measurement

POWIM: MLABR:

Optical Reflectivity Measurement

Optical Reflectivity Measurement of LRA

Far Field Diffraction Pattern Measurement

Far Field Diffraction Patterns

Laser Ranging Campaign of Shenzhou IV in China

- Since January 7, 2003, the Beijing, Shanghai, Changchun, Wuhan and BeijingA (Argentina) stations started to track the orbital module at an altitude of 350 KM
- Supported by the USB (United S-Band Ranging and Range Rate) system, and pass by pass precise orbit prediction provided by the $\mathbf{X i}$ 'an Mission Control Center, the 5 stations can track the module even in the earth shadow
- 82 passes experimental ranging data were obtained during January-March, 2003.

Real Time Display of Shenzhou IV Tracking at Shanghai

文件（ E ）编辑（E）选项与处理（U）帮助（H）

［目

Satellite：SZ
（m）Rms： 0.0 mm

Date： 2003131 Time：21：11
Points： 1369

Ratio：73\％

Changchun Station on Jan．31， 2003

Changchun Station on Feb．3， 2003

0.00 (h)	03010713		0.04 (h)		Shenzhou			0.07 (h)
1069 Points;		TB :	77.61	$80.0) \mathrm{ms}$;	RB: $* * * * *$	m;	TL:	4.6 min

Read
$0.00(h) \quad 03022413 \quad$ Shenzhou 0.03(h) 07(h)

TB: $99.5(100.0) \mathrm{ms} ; ~ R B: 270.7 \mathrm{~m} ; ~ T L: ~ 4.0 \mathrm{~min}$ Shanghai Station on Feb.24, 2003

THANK YOU

