LASER RETROREFLECTOR ARRAY OF GEOSTATIONARY SATELLITE, ETS-VIII

June 10, 2004

Takashi UCHIMURA, Mikio SAWABE, Akinobu SUZUKI, Hiroyuki NODA (1) (1)Japan Aerospace Exploration Agency

14th International Workshop on Laser Ranging, San Fernando Spain

Overview of ETS-VIII

The ETS-VIII (Engineering Test Satellite-VIII) is a Geostationary satellite which will be carried into 146 degrees East. This satellite is being developed to establish and verify the following technologies;

- 3-tons class geostationary satellite bus
- Large-scale deployable reflector (17m x 14m, Tennis court!)
- Mobile satellite communications system
- Mobile satellite multimedia broadcasting system
 - Satellite positioning (includes time synchronization) using the HAC (High Accuracy Clock; Cesium) equipments

Launch date : FY2006(Tentative) Design Life : 10 Years (Satellite Bus) 3 Years (Payload) Orbit : Geostationary Orbit (146°E) Weight : 3,200kg (BOL)

Experiments using HAC(+LRRA)

Goals:

- On-board clock estimation accuracy using navigation signal <10ns
- Real time orbit estimation using navigation signal <10m (position)

Candidate SLR station

It is possible to track ETS-VIII from the station of WPLTN.

For estimate ETS-VIII position precisely, it needs SLR data observed from other stations which consists good arrangement for orbit determination with Japanese station.

Example of SLR Link Budget Calcuration

The Lageos normalized signal level is approximate 0.01.

According to this result, most candidate stations are possible to get return from ETS-VIII, but we need to re-calculate link budget using more detailed parameters and also study considering other parameters such as range gate, detecting method, etc.

Å@	GMSL	KOGL	STRL	KUNL	YARL
Cirrus Cloud Transmission	1	1	1	1	1
Atmospheric Transmission	0.2	0.2	0.2	0.2	0.2
Longterm Beam Spread [1Å-10 ⁻⁶ rad]	5	5	5	5	5
Shortterm Beam Spread [1Å-10 ⁻⁶ rad]	20	20	20	20	20
Receive Efficiency	0.5	0.1	0.41	0.5	0.76
Satellite Backscattering Cross Section [1Å-10 ⁶ m ²]	168	168	168	168	168
Quantum Efficiency [%]	10.4	15	20	20	15.5
Receive Aperture [m ²]	0.78	1.76	0.44	0.88	0.454
Satellite Height [km]	37000	37100	37100	38300	37100
Wavelength [1Å∢10 ⁻⁶ m]	0.532	0.532	0.532	0.532	0.532
Transmit Efficiency	0.5	0.3	0.41	0.5	0.95
Pulse Energy [mJ]	300	50	50	120	100
Average signal level [p.e.]	6.551	1.687	0.788	4.966	5.408
Lageos normalized signal level	0.017	0.016	0.016	0.014	0.016
	GMSL	KOGL	STRL	KUNL	YARL