Seasonal effects on Laser, GPS and

 Absolute Gravimetry vertical positioning at the OCA-CERGA geodetic station, Grasse (FRANCE) J. Nicolas (L2G/ESGT, France), J.M. Nocquet (University of Oxford), M. Van Camp (Royal Observatory of Belgium), J.P. Boy (EOST, France), J. Hinderer (NSA/GSFC), M. Amalvict (EOST), P. Gegout (EOST),E. Calais (University of Purdue, USA), J.J. Walch (OCA/GEMINI, France)

Objectives

- Monitoring the vertical displacements of the Grasse fundamental geodetic observatory
-Comparing the time series of 3 independent geodetic techniques Satellite Laser Ranging (SLR) GPS Absolute Gravimetry (A.G.)
-Comparing the observations with geodynamical models of the different loading effects to better understand the annual signal 6 -year time series spanning 1998-2003

Data

5 years of SLR time series

- LAGEOS-1 and -2 satellite monthly combined solution
- Standard deviation of the vertical component: $3 \mathbf{~ m m}$

6 years of GPS time series

- Weekly CODE (Centre for Orbit Determination in Europe)
- Standard deviation on the vertical component : $\mathbf{4} \mathbf{~ m m}$

14 A.G. campaigns

- FG5 accuracy 1-2 $\boldsymbol{\mu} \mathbf{G a l}$
- Corrections for earth tides, ocean loading, polar motion, and local atmosphere effects ($-0.3 \mu \mathrm{Gal} / \mathrm{hPa}$ due to loading and to mass attraction)

Six years results

- Both SLR and GPS time series of the vertical component show a significant annual signal
- Non linear least squares algorithm to search for periodical signal :
- Amplitude : 5.5 mm (GPS) - 6.1 mm (SLR)
- Phase : maximum near July

