«!FTLRS SUPPORT TO THE GAVDOS PROJECT!»

P. Berio, P. Exertier, **F. Pierron**, J. Weick, D. Coulot, O. Laurain, P. Bonnefond and Ftlrs laser staff Observatoire de la Côte d'Azur

Technical developments and previous campaigns

Logistic and installation in Crete

Operational issues

Observations and results

Scientific processing

- Laser positioning and bias estimations
- GPS solutions
- Comparisons and conclusion

Ftlrs

The French Transportable Laser Ranging System

- The smallest SLR system in operation
 - 350 kg

Ftlrs

)ca-Grass

- Ø tel = 13 cm (emission/reception)
- Time = GPS steered rubidium
- LEO satellites to Lageos

Observational point
FTLR5
Aeteorological Statioa
Tent Concrete Dave

Ftlrs previous campaigns Corsica (2002)

Radar

&

Laser

JASON-1 absolute calibration and orbit validation (CAL/VAL) in tandem mission with TOPEX/Poseidon Precise positioning GPS + Laser + DORIS Altimeter calibration = precisely compare Orbite du Satellite altimeter data Balise DOR IS satellite altitude above the sea level Altitude du Satellite Station de télémétrie Mesure Altimétrique LASER 11°E П Hauteur de la Surface de la Mer Tide gauge Maréoraph + GPS buoy Topographie Dynamique Hauteur du Géoïde Ellipsoïde de Référence 41° 35'N 8° 50'E LASER permanent, DORIS permanent (projet), GPS permanent LASER Mobile, Localisation DORIS, GPS permanent ♥ Marégraphe permanent ♡ Marégraphe (projet) TOPEX/Poséidon, Jason ERS, ENVISAT

Establisment of an absolute sea level monitoring and altimeter calibration facility on the isle of Gavdos (south of Crete in Grece

Estimation of the altimeter satellites biases and drifts

Determine the mean sea level and the earth 's tectonic deformation field in the region of Creete with an accuracy of a few millimeters

On site measurements : tide-gauges Gps and Foris Direct altimeter transponders

Ftlrs

Local configuration - Crete and Gavdos

Slr altimeter calibration scheme

Ftlrs

Oca-Grass

Ftlrs deployment in three days(end of March 2003)

Ftlrs

Oca-Grass

FTLRS GAVDOS CAMPAIGN - 30/03/2003=>3/11/2003

- Positioning with the 4 geodetic satellitesLAGEOS-1LAGEOS-2STARLETTESTELLA
- Goals :

- Calculate FTLRS position in Crete
- Evaluate precision and accuracy of the positioning
- Compare with our GPS solution
- Main steps of computation :
 - 1 Orbit calculation
 - 2 Laser positioning
 - 3 GPS solution
 - 4 Comparison Laser / GPS

GINS software (by CNES)

Models chosen : - gravity : grim5

 ocean tide : fes2002
 atmospheric density : dtm94
 earth orientation parameters : eopc04
 empirical forces in R, T, N directions

(bias + sinusoidal terms at the orbital period)

Terrestrial reference system : ITRF2000

ca-Gras

ORBIT CALCULATION

Overlap periods allow to control the orbits quality of successive arcs

Mean RMS	LA1 = 1.05 cm	STA = 1.98 cm
	LA2 = 0.82 cm	STE = 2.17 cm

ca-Gras

LASER POSITIONING -1-

MATLO software (developed by OCA) : dedicated to laser positioning

Initial coordinates from JCET GPS processing

(July 2003)

X = 4744552.5533 m Y = 2119414.5451 m Z = 3686245.1363 m

FTLRS tracking data (6 months)

	Total number of NP	Mean number of NP for a 7-day period
LAGEOS-1	108	5
LAGEOS-2	315	15
STARLETTE	2902	138
STELLA	1479	70
TOTAL	4804	228

Objective : Reduce the correlation between the biases and the vertical component (dh)

-Gra

LASER POSITIONING -2-

Position based on a global solution Coordinates and bias are estimated with the whole data \Rightarrow d = -0,59 cm± 0,10 cm (Relative to JCET solution) d_=0,25 cm ± 0,10 cm dh = 0.03 cm± 0,30 cm Biases LA1 = -1,97 cm ± 0,43 cm LA2 = -2,06 cm± 0,32 cm Max Correlation (dh/bias) = 0,93 STA = -2,24 cm ± 0,19 cm STE = -2,83 cm± 0,19 cm

Correlation remains too high between biases and dh

Some part of the bias may move to dh and vice versa

c**a-Gra**

LASER POSITIONING

-3-

Position estimated every 7 days while biases/sat (supposed constant) remain estimated with the whole data

d_=-0,58	8 cm	± 0,35 cm	l	(Relative to JCET
d_= 0,16	cm	± 0,33 cm	L	solution)
dh = 1,25	cm	± 0,28 cm	L	
Biases	LA1 = -0,	.96 cm	± 0,21 cm	
	LA2 = -0,	.97 cm	± 0,18 cm	Max correlation (dh/bias) =0,57
	STA = -1	<i>,</i> 57 cm	± 0,11 cm	
	STE = -2,	02 cm	± 0,11 cm	

Correlation decreases significantly

Estimated station bias is globally lower $B = 10 \pm 2 \text{ mm}$

 \rightarrow Final solution held

Ftlr

LASER POSITIONING -4-

Tests to correct orbits locally with the short-arc technique (CALTIM software)

 \rightarrow 17 short-arcs corrected with 3 stations above Europe

→ Slight radial error detected on STELLA's orbit which would explain abnormally high bias value (about 10 mm)

Biases values were expected to be around 5 mm (10 mm obtained)

- → Local tie of the calibration target was determined within 1 cm
- → accuracy of chronometer on short time flight within 5 mm

■ Tests of positioning with JASON-1 \rightarrow 2 cm eastwards translation \rightarrow Remains unexplained !

GPS SOLUTION

Network setting up

GAMIT software (developed by MIT)

 Observations :
 March 12th -15th
 and
 20th - 24th 2003
 (9 days)

 January 28th - February 9th 2004
 (13 days)

Ftlrs

Oca-Grass

ca-Gras

GPS SOLUTION

Results 2004

d_ = -0,21 cm d_ = 0,75 cm dh = -0,68 cm

COMPARISON LASER / GPS

 GPS coordinates have been corrected from estimated plates motions and brought back to the laser measurements average date (July 16th 2003)

Corrected GPS position compared to Laser position

 $_{GPS} - _{Laser} = 0,00 \text{ cm}$ $_{GPS} - _{Laser} = 0,32 \text{ cm}$ $h_{GPS} - h_{Laser} = -0,12 \text{ cm}$

Homogeneous results between GPS and Laser techniques

→ Less than 5 millimeters difference

	X (m)	Y (m)	Z (m)
Laser position	4744552.5636	2119414.5525	3686245.1388
GPS position	4744552.5614	2119414.5550	3686245.1381

Conclusion and prospect

Confirmation and new validation FTLRS performances

Success of the campaign in a European joined project

Some millimeter level reached for the orbit validation and the station positioning

San Fernando colocation experiment in progress

Colocation experiment today in San Fernando / june 2004

SLR at Observatorio de la Armada

See you there on tuesday evening

Ftlrs

Oca-Gras

Next campaign - Normandy (2004)

Ftlrs

ca-Gra

Objectives :

- Vertical variations measurement
- Multi-techniques
- why normandie
 - High ocean tide
 - Load effect on earth

Campaign dates: September/October 2004