

SLR Contributions in the Establishment of the Terrestrial Reference Frame

Erricos C. Pavlis,

JCET and NASA Goddard Space Flight Center Univ. of Maryland Baltimore County Baltimore, Maryland (epavlis@JCET.umbc.edu)

14th International Workshop on Laser Ranging San Fernando, Spain 7-11 June 2004

Motivation

SLR Observations Contributing in:

- Geocenter" Variations
- Moment of Inertia Variations
- EOP
 - • •
- Correlation with geophysical signals
- Modeling Improvements
- ...
- Summary Conclusions

- Advances in technology require concomitant advances in science
- Changes in one, sooner or later bring changes in the other
- After the giant steps taken in the mid-80s and early 90s, SLR technology advances forced major "rehabilitation" of the way SLR data are analyzed and redirected our products in markedly different areas.

• Terrestrial Reference Frame

- Establishment: Site Positions & Velocities
- Monitoring: Earth Orientation Parameters, Scale, Geocenter, Moments of Inertia, Temporal Gravity Variations,...
- Orbit Determination, Calibration, Validation
- Atmospheric Refraction Model Improvement, Validation
- Fundamental Physics & Interplanetary Experiments
- Target Characterization, Orbital Debris Tracking...

• "State-of-the-art" definition of a TRF: *ITRF2000*

- Long-term stability affected by longwavelength temporal gravity variations
- SLR is the primary technique for the definition of the origin and scale of the TRF

Comparison of Current TRFs Position

Multi-technique Comparison with ITRF2000

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

Comparison of Current TRFs (cont.) Velocities

ANALYSIS CENTER

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

TRF Orientation: Polar Motion

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

TRF Orientation: UT1 & Length of Day

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

TRF and CoM

The coordinates of the sites defining the TRF determine the origin of the TRF, while the CoM is defined by the instantaneous distribution of mass in the Earth system.

Z_{ITRF2000}

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

ITRF2000

∆Gravity - TRF Coupling I

Mass redistribution in the fluid envelope of Earth displaces the center of mass of the system relative to the solid crust (on which the tracking sites are fixed) and modifies the **moments of** inertia, with consequent changes in the rotational kinematics and dynamics of the system.

CoM Variations in TRF

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

GM Estimate and Uncertainty

$GM_{IERS} = 398600.441500 \text{ x } 10^9 \text{ [m}^3/\text{s}^2\text{]}$ $GM_{SLR} = 398600.441644 \text{ x } 10^9 \text{ [m}^3/\text{s}^2\text{]}$ $1 - \sigma_{GM SLR} = 0.000006 \text{ x } 10^9 \text{ [m}^3/\text{s}^2\text{]}$ $TRF \text{ scale at " 0.3 parts in 10^9}$

SSH Variations 2001 - 2003

The 2002-03 El Niño

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

Zonal Variations: J₂-dot

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

International Laser Ranging Service

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

Modeling Improvements

- Strict enforcement of the IERS Conventions 2000
 - Improved nutation
 - Tides (Solid Earth, Oceans and Atmospheric)
 - ...

. . .

- Consideration of geophysical fluids' effects on the sites and on the orbits (done consistently)
 - Ocean loading
 - Atmospheric loading
- Improved atmospheric refraction models valid throughout the utilized wavelengths (.355-1.064 μ m)
- Target-dependent modeling (orbit, CoM, attitude,...)

Example: Atmospheric Loading

Residuals without Atmospheric Loading Modeled [m]

Residuals with Atmospheric Loading Modeled [m]

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

Example: Site Tidal Variations

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

Example: Orbital Attitude

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

Example: Atmospheric Refraction

Wavelength (µm)

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

... a re-analysis to be released by July 2004!

14th International Laser Ranging Workshop, San Fernando Spain, 7-11 June, 2004

