INTERANNUAL AND ANNUAL VARIATIONS IN THE GEOPOTENTIAL OBSERVED USING SLR

Goddard Space Flight Center

C.M. Cox², B.F. Chao¹, A. Au²

¹Space Geodesy Branch NASA Goddard Space Flight Center, Mailstop 926.0, Greenbelt, MD 20771, USA

²Raytheon ITSS NASA Goddard Space Flight Center, Mailstop 926.0, Greenbelt, MD 20771, USA

SLR Observed J₂

ILRS 14th Workshop

Chao, B.F., A.Y. Au, J-P.Boy, C.M. Cox, Time-Variable Gravity Signal of an Anomalous Redistribution of Water Mass, in the Extratropic Pacific during 1998-2002, *Geochem. Geophys. Geosyst.*, Vol. 4, No. 11, 1096, DOI 10.1029/2003GC000589, 14 November 2003.

ILRS 14th Workshop

J₂, Hydrology, Oceans, and Glaciers

pre-1998 rate removed from all data

ILRS 14th Workshop

Recent Progress

Effort made to recover entire field for any given period

- Science [2002] results effectively discarded the non-zonal terms
 - ⇒ Some indication of geophysical signal recovery, however

All SLR data have been or are being reprocessed

- ITRF 2000 Reference frame
- Latest pre GRACE gravity model
- The base tide set is from GOT 99.2 model (Richard Ray)
 - ⇒ Complete to degree 10 for: 2N2 2Q1 Ae2 J1 L2 M1 Oo1 Phi1 Pi1 Psi1 R2 T2
 - ⇒ Complete to degree 20 for: K1 K2 M2 N2 O1 P1 Q1 S2
 - ⇒ Equilibrium long period tides
 - \Rightarrow 18.6 yr from long period rate and tide solution [Cox, et al. 2001]
- Atmospheric gravity variations wrt 2000-2001 mean modeled
 - → Monthly, 5x5 correction
 - ⇒ IB assumed for Ocean
- Rates and annuals for J₂₋₄ modeled
 - ⇒ Reduces errors associated with non-uniform temporal tracking coverage
- Much more data cleanup....

Maximum spherical harmonic degree of 4 recovered, although a max degree of 5 possible with '93 onward

⇒ Pre '86 recovery of Nmax=4 field is weak

SLR Satellites Used:

- LAGEOS-1
- LAGEOS-2
- Ajisai
- Starlette
- Stella
- Beacon Explorer C
- TOPEX/Poseidon
- GFZ-1
- Westpac

New (improved) Series C_{2,0}

ILRS 14th Workshop

ILRS 14th Workshop

Zonal Changes in Geoid

Computed from zonal harmonics only

ILRS 14th Workshop

S_{3,3}

 $s33 = 1x10^{-1}$

ILRS 14th Workshop

ILRS 14th Workshop

Period: 1980-1997

wrt ITRF2000 Definition for C/S_{2.1} Rates

ILRS 14th Workshop

1980 - 1997

1980 - 2002

ILRS 14th Workshop

SLR, 1980 - 1997

T/P (Anderson et al. 2004)

ILRS 14th Workshop

SLR, 1980 - 1997

GIA Model Courtesy of Erik Ivins Lower Mantle Viscosity = 2x10²¹ Pa s

ILRS 14th Workshop

1998-2002 Average Annual Variation (non-atmosphere, IB)

ILRS 14th Workshop

ILRS 14th Workshop

Conclusions

Large change in J_2 behavior starting ~1998

- Has returned >50% since peak
- Ocean, Hydrology, and Mountain Glaciers each only explain ~20%?
 - \Rightarrow Changes consistent with timing of PDO and extratropic SST and SSH changes
 - ⇒ Glaciers are possibly significant contributor [*Dickey et al.*, 2002]
 - \Rightarrow Dyurgerov [2003] data implies J₂ change on order of ECCO or Soil
- Connection with J₄
- Sum of zonals indicates possibility of rapid geoid drop in polar regions
 - \Rightarrow If so, where did the mass go?

Regional interannual geoid variation of 5 to 8 mm

- Eastern Pacific low
 - → Negative mass anomaly corresponding with El Nino?
- Wandering geoid high in NW Pacific
- Post 1998 low in Northern Russia

Observed geoid rates are similar to Post Glacial Rebound predictions

- Differences in Equatorial Regions
- Signal in N. America/Greenland larger relative to Antarctica
 - ⇒ Implications for present day mass rates?

Long-wavelength annual signals in good general agreement with GRACE

- Initial comparisons show similar amplitudes, structures, and phases for similar resolutions