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The Purpose:

ß LLR today:
– History & Current State

ß LLR Science:
– Science from the Orbit
– Lunar Science
– Earth Science
– LLR Future

Lunar Laser Ranging Technology in 21st century:
Optical Infrastructure in Space to Enable Exploration

LLR is one of the best tools for comprehensive gravity tests.
LLR enables robust advances in lunar science & Fundamental physics.

LLR is about to go through a renaissance with APOLLO.

Talk will cover:

Take-Away Message:
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Lunar Laser Ranging

Laser Ranges between observatories on
the Earth and retroreflectors on the Moon
started by Apollo in 1969 and continue to
the present

n LLR conducted
primarily from 3
observatories:

– McDonald (Texas, US)
– OCA (Grasse, France)
– Haleakala (Hawaii, US)

n 4 reflectors are ranged:
– Apollo 11, 14 & 15 sites
– Lunakhod 2 Rover

It all started 35 year ago…
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Excellent Legacy of the Apollo Program

Today LLR is the only continuing experiment since the Apollo-Era
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Lunar Retroreflectors

Lunakhod Lunakhod Rover (USSR, 1972)Rover (USSR, 1972)

French Retroreflector array

Beginning of the laser ranging technology.
Today, laser ranging has many applications:
ß Satellite laser ranging, communication systems,
metrology, 3-D scanning, altimetry, etc.



Historical Accuracy of LLR
LUNAR LASER RANGING SCEINCELUNAR LASER RANGING SCEINCE

– Raw ranges vary by several ~1000s km

– Present accuracy down to ~1.5cm level

Lunar laser ranging
schematics

Solution parameters include:

– Dissipation: tidal and solid / fluid
core boundary (CMB);

– Dissipation related coefficients
for rotation & orientation terms;

– Love numbers k2, h2, l2;

– Correction to tilt of equator to
the ecliptic – approximates
influence of CMB flattening;

– Relativity parameters.
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Science from the Orbit

n Lunar ephemerides are a product of the LLR analysis used
by current and future spacecraft missions.

n The analysis is sensitive to astronomical parameters such
as orbit and mass.

n The dissipation-caused acceleration in orbital longitude is
–25.7 "/cy2, dominated by tides on Earth with a 1% lunar
contribution.

n Sensitive tests of gravitational physics include:
– the equivalence principle (used for an accurate determination

of the PPN parameter  b),

– limits on the time variation of the gravitational constant G, and

– geodetic precession.

n LLR data analysis used to determine:
– Station positions and motion,

– Earth rotation variations, and precession

Earth Science:
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ß Daily life: GPS, geodesy, time transfer;
ß Precision measurements: deep-space

navigation & astrometry (SIM, GAIA,....).

35 Years of Relativistic Gravity Tests

Non-linearity
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 Mercury Ranging ‘93

LLR ’02

51(2.12.3)10g--=±¥

General Relativity

ß LLR (1969 - on-going!!)
ß GP-A, ’76; LAGEOS, ’76,’92;
GP-B, ’04; LISA, 2012

Radar Ranging:
ß Planets:  Mercury, Venus, Mars
ß s/c: Mariners, Vikings, Cassini,
MGS, MO  accuracy ̃few
meters
ß VLBI, GPS, etc.

Laser:
ß LLR, SLR, etc.

LLR contributed to a factor of 100 improvement in the gravity tests in 35 years

New Engineering Discipline –
Applied General Relativity:

Techniques for Gravity Tests:

Designated Gravity Missions:

Mars Ranging ‘76
31210g--=¥

 Astrometric VLBI ‘97

41310g--=¥
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Relativity with LLR Today

In PPN formalism the EEP violation effect has the
form:

()122121210222(),            143()()4.4510,           43.GGGIIIememaaaMMMUaaaMMMMcaUUaMcMcbghhhbg-ÊˆÊˆD-≡=-=+--Á˜Á˜+Ë¯Ë¯D=⋅-=-⋅¥≡--

If h =1, this would produce a 13 m displacement of lunar
orbit.

By 2004, range accuracy is ̃ 1.5 cm… the effect was not
seen.

LLR advantage – new techniques and longer data span help to improve results

Recent LLR results (April 2004):
13(0.51.4)10GIMM-=-±¥

– corrected for solar radiation pressure
13(1.482.0)10-=-±¥Daa

– Strong Equivalence Principle
443(3.44.5)10bgh-=--=±¥

Using Cassini ’03 result
541(2.12.3)10     1(1.081.13)10gb---=±¥fi-=±¥

121(0.461.0)10yr  GG--=±¥&
Geodetic precession

0.00350.0066gpK=-±
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Lunar Science

n The second-degree tidal lunar Love numbers are detected:
– k2 has an accuracy of 11%.

n Lunar tidal dissipation is strong:
– Its Q has a weak dependence on tidal frequency;

– A fluid core of ~20% the moon's radius is indicated by the
dissipation data;

– Evidence for the oblateness of the lunar fluid-core/solid-mantle
boundary is getting stronger;

– This would be independent evidence for a fluid lunar core.

n Moon-centered coordinates of four reflectors are determined.

n LLR measurements are sensitive to:
– Lunar rotation & orientation variations, tidal displacements

n Lunar rotation variations sensitive to:
– Interior structure, physical properties and energy dissipation;

n Weaker sensitivity to:
– Flattening of the CMB

– Moment of inertia of the fluid core
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Love Number Determinations

n Love number k2 sensitive to:
– Rotation and orientation

n Love numbers h2 and l2 sensitive to
– Tidal displacement of retroreflectors

n LLR solutions
– With l2 fixed at 0.011
– k2 = 0.0227 ± 0.0025 – a decrease from

previous estimate due to core oblateness
– h2 = 0.039 ± 0.010

n More Love Numbers from seismic
velocities extrapolated down to core:
– k2 in the range 0.022-0.023

– h2 about 0.039

– l2 around 0.011

n Compatible spacecraft determination:
– k2 = 0.026 ± 0.003

– Larger than either LLR or elastic models but
consistent within observational uncertainties
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Dissipation: Fluid Core & Tides

Analysis of dissipation coefficients shows the following:

n Core component of dissipation stronger than earlier
indications:
– 41% of the largest dissipation term due to fluid core

n Tidal Q increases less with tidal period T, assuming
the following parameterization Q = QF(T / 27.212 d)–w:
– Thus for  k2=0.0227,   Q = 33 (T / 27.212d)0.05

– Qmonthly = 33 Qannual = 38

n Turbulent boundary layer theory implies fluid core
– For pure FE(=7000 kg m-3),  Rc=350 km

– CMB topography would decrease this value

– Lower density would increase the value for Rc
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Core Oblateness

n To first approximation, CMB oblateness affects tilt
of lunar equator to ecliptic plane.

n Solutions contain analytical tilt correction:
– tilt correction solution value is 2 times its _

– tilt parameter anti-correlates with k2

• larger CMB oblateness  Æ smaller k2

n Additional solution parameters that affect tilt
– Moment differences, gravity harmonics, Love number k2

n Tilt correction depends on fluid core moment & CMB flattening
– for pure Fe fluid core with Rc = 350 km

• Cc/Cm = 7 ¥ 10 -4 gives flattening of 3 ¥ 10-4

– whole Moon dynamical flattening is
• (2C-A-B)/2C = 5.18  ¥ 10-4

– surface geometrical flattening is 1.3 ¥ 10-3

n Detection of core oblateness would confirm presence of fluid core

n Considering size of the noise, core oblateness detections are
regarded as tentative
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Core Moment of Inertia

Analytical development represents a rotation term that is sensitive
to the fluid core via moment of inertia; detection of this term would:

– confirm presence of fluid core;

– give a direct measurement of the moment of the fluid core.

This term is difficult to detect, however
– close in frequency to a free libration term;

– 81 year beat period.

Current solutions give:
– ratio of core to mantle moments of Cc/Cm = (15 ± 19) ¥ 10 -4

– not a detection and larger than the limit inferred from dissipation

A solid inner core may exist within the fluid core
– Gravitational interactions between inner core & mantle might be detectable

• inner core rotating independently

• inner core gravitationally locked to mantle

– Inner core would complicate interpretation of LLR solutions, however

• two surfaces for turbulent dissipation at solid/fluid interfaces

• inner core not rotating w/ fluid core will affect core moment & flattening

Inner Core:
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The APOLLO Project & Apparatus:
Apache Point Observatory Lunar Laser-ranging Operation

n Move LLR back to a large-aperture telescope
– 3.5-meter: more photons!

n Incorporate modern technology
– Detectors, precision timing, laser

n Re-couple data collection to analysis/science
– Scientific enthusiasm drives progress

The 3.5 meter telescope prior to laser installation.
The laser sits to the right of the red ladder attached to the scope.

n Uses 3.5-meter telescope at 9200-
ft Apache Point, NM

n Excellent atmospheric “seeing”
n 532 nm Nd:YAG, 100 ps,
115 mJ/pulse, 20 Hz laser

n Integrated avalanche photodiode
(APD) arrays

n Multi-photon  &  daylight/full-moon
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LLR in the near Future

n One millimeter range precision
n Weak Equivalence Principle (WEP) to Da/a  _ 10_14

n Strong Equivalence Principle (SEP) to h  _ 3 ¥ 10_5

n Gravitomagnetism (frame dragging) to 10_4

n dG/dt to 10_13 G per year
n Geodetic precession (µ g) to _ 3 ¥ 10_4

n Long range forces to 10_11 _ the strength of
gravity

n 7 ps round-trip travel time error
n Half-meter lunar reflectors at ±7° tilt _ up to
35 mm RMS uncertainty per photon

n 95 ps FWHM laser pulse _ 6 mm RMS
n Need ̃402 = 1600 photons to beat down error
n Calculate ̃5 photon/pulse return for APOLLO
n “Realistic” 1 photon/pulse _ 20 photons/sec

_ mm statistics on few-minute timescales

APOLLO Recipe for a mm-range:

Interplanetary laser ranging is the next logical step
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Summary and LLR Challenges

n Ways to improve lunar science:
– Multiple reflector data is important (to get rotation and tides);

– Continued data will give improved accuracy of results;

– Long time spans are important;

– Also multiple ranging sites on Earth are important.

n Unsolved problems:
– Cause of anomalous de/dt,

– Does moon has an inner solid core?

n Improved range accuracy gives improved tests of gravitational physics

n When APOLLO accuracy is demonstrated, the next logical questions:
– Are accuracy upgrades at other LLR sites likely?

– Are new LLR stations likely?

– Would new retroreflectors or optical transponders help?

– Is analysis of mm LLR data easier than mm SLR data due to stable orbit?

n “Return to the Moon” may be an opportunity to place new retroreflectors
and/or optical (dual optical/radio) transponders on moon:

– Ideas, suggestions? How to optimize accuracy/signal strength?

– New missions, technologies, capabilities?

– Continuing (and increasing?) need for future LLR data.

Laser Ranging technology is important for space exploration!
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