

John J. Degnan Sigma Space Corporation 14th International Workshop on Laser Ranging San Fernando, Spain 7-11 June 2004

*Valid only for a linear optical system. We need to perform a coordinate transformation whenever the beam changes direction

Simplified SLR2000 Transceiver

Automated Devices

•Star CCD camera periodically updates mount model

•3x telescope compensates for thermal drift in main

telescope focus

•Beam magnifier controls laser spot size and divergence at exit aperture

•Risley prism pair controls transmitter point-ahead

•Variable iris controls receiver field of view (FOV)

•Quadrant detector provides fine pointing corrections

*Planned modifications in red

Transmitter

Quadrant Detector

$$M_{1a} = \begin{vmatrix} 3\Lambda & 2.267\Lambda \\ 0 & 0.333\Lambda \end{vmatrix}$$
$$M_{1b} = \begin{vmatrix} 0.079\Lambda & 2.57\Lambda \\ -0.392\Lambda & -0.101\Lambda \end{vmatrix}$$

Star Camera

$$M_{1c} = \begin{vmatrix} -35.559\Lambda & 0.405\Lambda \\ -2.469\Lambda & 0 \end{vmatrix}$$

General Form
$$M_{1x} = \begin{vmatrix} a_x \Lambda & b_x \Lambda \\ c_x \Lambda & d_x \Lambda \end{vmatrix} \quad \Lambda = \begin{vmatrix} 0 & -1 \\ 1 & 0 \end{vmatrix}$$

$$M_{2} = \begin{vmatrix} \Gamma & d_{C} \Gamma \\ 0 & \Gamma \end{vmatrix}$$
$$\Gamma = \begin{vmatrix} -\cos\gamma & -\sin\gamma \\ \sin\gamma & -\cos\gamma \end{vmatrix}$$

 $\gamma = \alpha - \alpha_0 - \varepsilon$

 α = mount azimuth angle ϵ = mount elevation angle α_0 = azimuth angle of transceiver axis at the Coude pit mirror = 67.4° (SLR2000) d_C = Coude path length = 1.742 m

Telescope Assembly Matrix

Outgoing Rays

$$M_{x} = M_{3}M_{2}M_{1x} = \begin{vmatrix} A_{x}\Gamma' & B_{x}\Gamma' \\ C_{x}\Gamma' & D_{x}\Gamma' \end{vmatrix}$$
$$\Gamma' = \begin{vmatrix} -\sin\gamma & \cos\gamma \\ -\cos\gamma & -\sin\gamma \end{vmatrix}$$
$$A_{x} = m_{t}(a_{x} + d_{C}c_{x}) + d_{T}c_{x}$$
$$B_{x} = m_{t}(b_{x} + d_{C}d_{x}) + d_{T}d_{x}$$
$$C_{x} = \frac{C_{x}}{m_{t}}$$
$$D_{x} = \frac{d_{x}}{m_{t}}$$

Incoming Rays

$$M_x^{-1} = \begin{vmatrix} D_x \Gamma'^T & -B_x \Gamma'^T \\ -C_x \Gamma'^T & A_x \Gamma'^T \end{vmatrix}$$
$$\Gamma'^T = \begin{vmatrix} -\sin\gamma & -\cos\gamma \\ \cos\gamma & -\sin\gamma \end{vmatrix}$$

$$M_{1x} = \begin{vmatrix} a_x \Lambda & b_x \Lambda \\ c_x \Lambda & d_x \Lambda \end{vmatrix}$$

- x = a Transmitter
 - b Quadrant Detector
 - c Star Camera

Star Calibrations

Δα	0.5 <i>arc</i> sec	$\sec\varepsilon\sin\gamma$	$-\sec\varepsilon\cos\gamma$	n_p	
Δε	 pixel	$\cos \gamma$	sin y	n_s	

$$\gamma = \alpha - \alpha_0 - \varepsilon$$

 $\Delta \alpha$ = star azimuth offset $\Delta \varepsilon$ = star elevation offset n_p = CCD pixel column n_s = CCD pixel row

NASA

Quadrant Pointing Correction

$$\begin{vmatrix} = \frac{10.5 \operatorname{arc} \sec}{mm} & | \sec \varepsilon \sin \gamma & -\sec \varepsilon \cos \gamma & | p_c \\ \cos \gamma & \sin \gamma & | s_c \end{vmatrix}$$
$$\gamma = \alpha - \alpha_0 - \varepsilon$$

 $\Delta \alpha$ = azimuth pointing correction $\Delta \varepsilon$ = elevation pointing correction p_c = horizontal centroid coordinate s_c = vertical centroid coordinate

Stepper-controlled Iris

$$\begin{vmatrix} \vec{x}_{a} \\ \vec{\alpha}_{a} \end{vmatrix} = \begin{vmatrix} 0 & -25.908 \Gamma'^{T} \\ \vec{x}_{T} \\ 0.039 \Gamma'^{T} & -24.387 \Gamma'^{T} \\ \vec{\alpha}_{T} \end{vmatrix}$$
$$\vec{x}_{a} = -\frac{25.908m}{rad} \Gamma'^{T} \vec{\alpha}_{T}$$
$$|x_{a}| = \sqrt{\vec{x}_{a}^{T} \vec{x}_{a}} = \frac{25.908m}{rad} |\alpha_{T}| = \frac{0.125mm}{arc \sec} |\alpha_{T}|$$
$$D_{a} = \frac{0.125mm}{arc \sec} FOV$$
$$D_{a} = \text{iris diameter}$$
FOV = Full Receiver Field of View in arcsec

Transmitter Point-Ahead

αp_{rp}	$= m_T \tau_r$	$-\sin\gamma\cos\varepsilon$	$-\cos\gamma$	à	
αs_{rp}		$\cos\gamma\cos\varepsilon$	$-\sin\gamma$	Ė	

 $\gamma = \alpha - \alpha_0 - \varepsilon$ αp_{rp} =Risley prism output angle projected into p plane αs_{rp} = Risley prism output angle projected into s plane m_T = post-Risley magnification of transmitter =30.48

 τ_r = pulse roundtrip time of flight

$$\alpha = azimuth rate$$

 ε = elevation rate

$$\frac{\alpha p_{rp}}{\alpha s_{rp}} = \begin{vmatrix} \delta_1 \cos \xi_1 + \delta_2 \cos \xi_2 \\ \delta_1 \sin \xi_1 + \delta_2 \sin \xi_2 \end{vmatrix} = m_T \begin{vmatrix} -\sin \gamma \cos \varepsilon & -\cos \gamma \\ \cos \gamma \cos \varepsilon & -\sin \gamma \end{vmatrix} \begin{vmatrix} \dot{\alpha} \tau_r \\ \dot{\varepsilon} \tau_r \end{vmatrix}$$

 δ_1 = half cone angle traced by wedge 1 δ_2 = half cone angle traced by wedge 2 ξ_1 = wedge 1 angle relative to home position ξ_2 = wedge 2 angle relative to home position

Solve above two equations for two unknown Risley orientations ξ_1 and ξ_2 :

$$\Delta \xi = \xi_2 - \xi_1 = \cos^{-1} \left\{ \frac{m_T^2 \left(\dot{\alpha} \tau_r \cos \varepsilon \right)^2 + \left(\dot{\varepsilon} \tau_r \right)^2 - \left(\delta_1^2 + \delta_2^2 \right)}{2\delta_1 \delta_2} \right\}$$

$$\cos(\xi_{1}) = \frac{-m_{T} \left[\left(\dot{\alpha} \tau_{r} \cos \varepsilon \right) \left(\delta_{1} \sin \gamma + \delta_{2} \sin(\gamma - \Delta \xi) \right) + \left(\dot{\varepsilon} \tau_{r} \right) \left(\delta_{1} \cos \gamma + \delta_{2} \cos(\gamma - \Delta \xi) \right) \right]}{\delta_{1}^{2} + \delta_{2}^{2} + 2\delta_{1}\delta_{2} \cos(\Delta \xi)}$$
$$\sin(\xi_{1}) = \frac{m_{T} \left[\left(\dot{\alpha} \tau_{r} \cos \varepsilon \right) \left(\delta_{1} \cos \gamma + \delta_{2} \cos(\gamma - \Delta \xi) \right) - \left(\dot{\varepsilon} \tau_{r} \right) \left(\delta_{1} \sin \gamma + \delta_{2} \sin(\gamma - \Delta \xi) \right) \right]}{\delta_{1}^{2} + \delta_{2}^{2} + 2\delta_{1}\delta_{2} \cos(\Delta \xi)}$$

$$\xi_2 = \xi_1 + \Delta \xi$$

Simulated LAGEOS Pass

Azimuth- Elevation Offsets & Beam Centering

Paraxial ray matrix theory can be applied to gaussian beam propagation if we define the following complex parameter:

$$\frac{1}{q(z)} = \frac{1}{R(z)} - j \frac{\lambda}{\pi \omega^2(z)}$$

If propagation from a point z_0 to z can be described by the ray matrix

$$M = \begin{vmatrix} A & B \\ C & D \end{vmatrix}$$

then the gaussian beam properties at z are given by

$$\frac{1}{q(z)} = \frac{C + D\frac{1}{q(z_0)}}{A + B\frac{1}{q(z_0)}}$$

Controlling Beam Divergence

The ray matrix which takes the transmitter beam from the Risley Prism output to the far field is of the form

$$FF = \lim_{r \to \infty} \begin{vmatrix} I & rI \\ 0 & I \end{vmatrix} \begin{vmatrix} m_t \Gamma' & d_t \Gamma' \\ 0 & \frac{1}{m_t} \Gamma' \end{vmatrix} = \begin{vmatrix} m_t \Gamma' & \frac{r}{m_t} \Gamma' \\ 0 & \frac{1}{m_t} \Gamma' \\ 0 & \frac{1}{m_t} \Gamma' \end{vmatrix}$$

where m_t is the total transmitter magnification. From our gaussian parameter, we obtain the following for the full beam divergence

$$\theta_{t} = 2 \frac{\omega(r)}{r} = \frac{2\lambda}{\pi m_{t} \omega(z_{0})} \sqrt{1 + \left(\frac{\pi \omega^{2}(z_{0})}{\lambda R(z_{0})}\right)^{2}} = \theta_{\min} \sqrt{1 + \left(\frac{\pi \omega^{2}(z_{0})}{\lambda R(z_{0})}\right)^{2}}$$

where $\omega(z_0)$ and $R(z_0)$ are the beam radius and phasefront radius of curvature out of the computer-controlled telescope in the transmit path. To first order, beam divergence varies linearly with the lens displacement from perfect focus.

Beam Divergence vs Phase Frontsicker Curvature at Risleys

Radius of SLR2000 primary, a = 20 cmOptimum spot radius at window*, $\omega_{opt} = a/1.12 = 17.9 \text{ cm}$ Post-Risley magnification, $m_t = 30.48$ Optimum beam radius at Risley, $\omega(z_o) = \omega_{opt}/m_t = 5.9 \text{ mm}$ Minimum Divergence, $\theta_{min} = 0.388 \text{ arcsec}$

- Ray matrix approach provides us with the mathematical tools to calculate in real time:
 - Scale factor and angular rotation for converting star image offsets from center in the CCD camera to azimuth and elevation biases
 - Scale factor and angular rotation for converting quadrant centroid position to satellite pointing correction in az-el space
 - Transmitter point ahead as a function of round trip time-of-flight and the instantaneous azimuthal and elevation angular rates
 - Iris diameter (spatial filter) setting for a given receiver FOV
 - Transmitter beam size divergence as a function of transmit telescope defocus