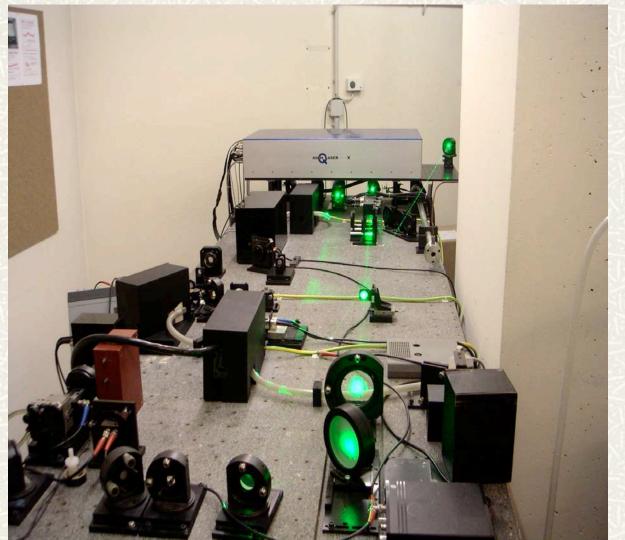


Graz 2 kHz System

Graz kHz SLR System:

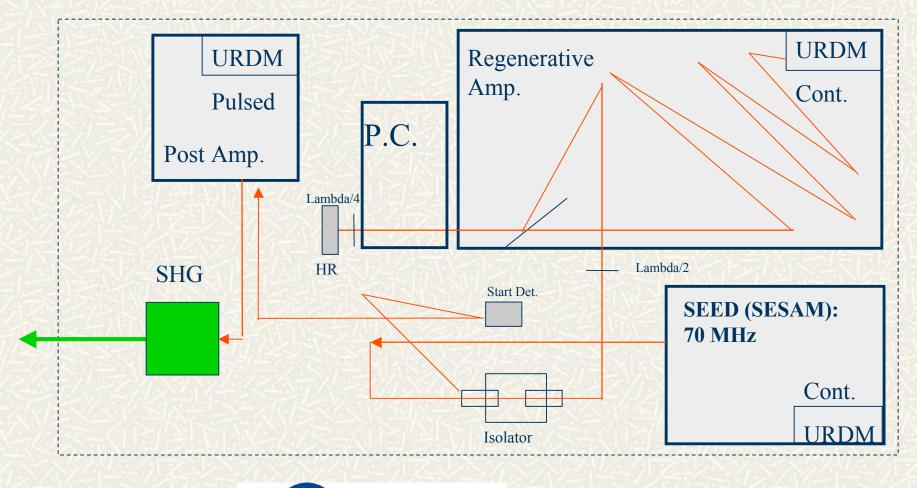
Design, Experiences and Results

G. Kirchner, F. Koidl



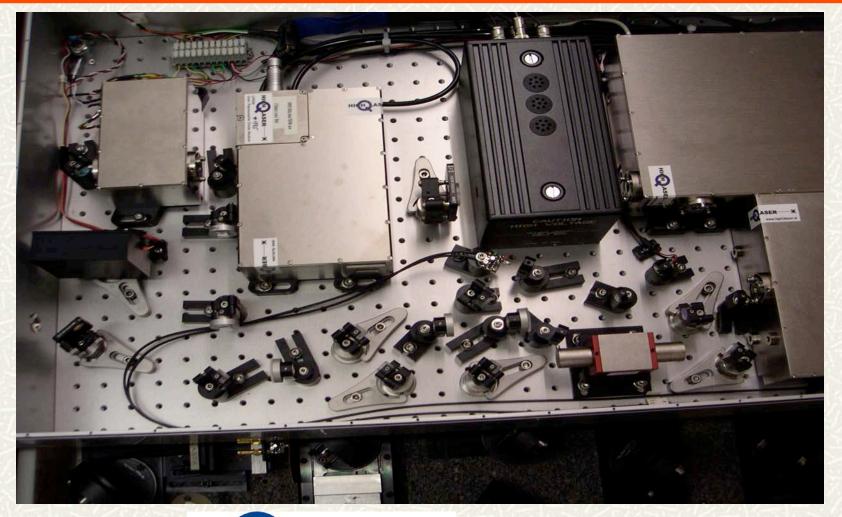
- Since ~ 2000: All Upgrades with respect to kHz:
 - > Event Timers; RG Generator; Software etc.
- 05/2003: First suitable kHz laser appeared;
 - > Offered by HighQLaser Company / Austria
- 10/2003: kHz Project granted;
- 03/2004: All papers signed, kHz laser ordered;
- 09/2004: First test passes, successful;
- 10/2004: Graz kHz SLR System OPERATIONAL

The 2 kHz Laser: Main Specs



- **Nd:Vanadate;**
- **DPSSL**;
- 10 2000 Hz;
- 2000 Hz routine;
- 10 ps Pulses;
- 9 400 μJ / shot
- 🦻 *a* 532 nm;

Made by



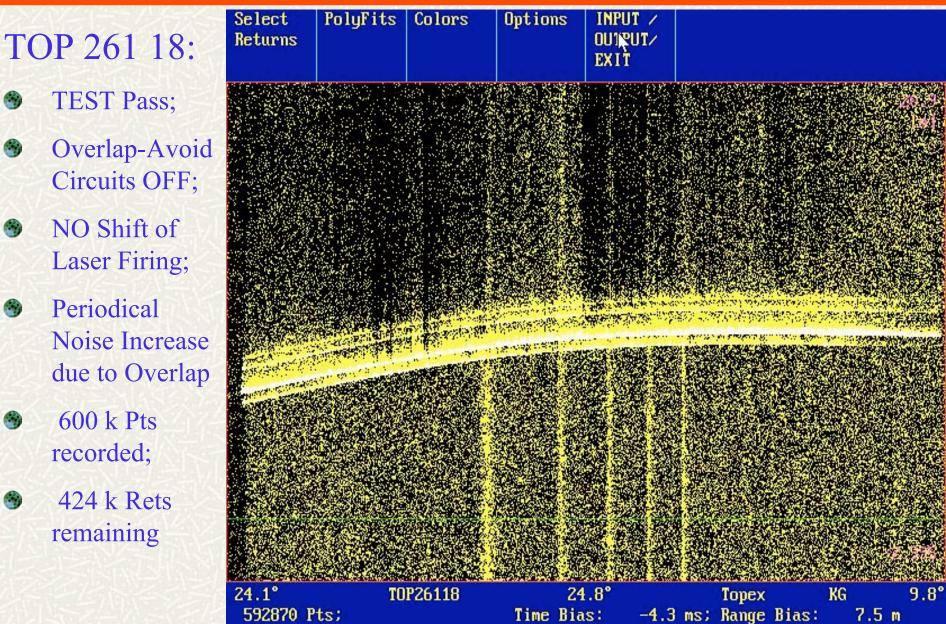
★ => An Austrian Company

Internal View

Made by

An Austrian Company
 San Fernando, June 2004

- Designed and built in Graz (FPGA-Chip);
- < 0.5 ns resolution, < 1 ns accuracy;</p>
- Receives next gate events via 16-bit interface from PC;
- Buffers up to 300 next gate events;
- Solution of the second state of the second
- Generates also laser firing/control commands;
- Shifts laser pulses automatically to avoid overlaps;
- Programs LC scattering shutter / attenuator for LEOs;


At 2 kHz, overlaps occur:

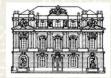
- > Laser fires when Single Photons arrive;
- **Backscatter blocks C-SPAD receiver;**
- Solution: Laser Firing slightly shifted;
 - > Controlled automatically via FPGA;
 - > No PC control / time needed;

WITH Overlaps

- Seven with low energy laser (400 μJ @ 532 nm):
- High satellites (Glonass, GPS etc.): SPEs only ...
 - Max. Return Quote: Few percents;
 - (some 10 Returns per second max.)
- LAGEOS: Return Quote most times < 15%; SPEs !</p>
- **Desting / Desting / Atmosphere:**
 - ➤ ALL in same order of Magnitude (5" 10");
 - Big fluctuations of received energy;
 - Gives sometimes very strong returns;
 - > But also a significant amount of SPEs ...

To reduce these fluctuations for LEOs:

- **We measure the energy of each Return;**
 - > Time between Compensated / Uncompensated Pulse:
 - ➤ 0-240 ps maps to 1-1000 PEs;
 - Measured with standard E.T. (1.2 ps resolution);
- A fast LC shutter / attenuator in front of SPAD:
 - Scattering LC Polymer Shutter, analog mode;
 - <1 ms switching time for 1:500 contrast ratio;</p>
 - Received energy controlled nearly shot-by-shot !
- First tests successfully started now; looks promising !



- 3.7 GHz PC; MS-DOS system;
- Standard interfaces to external world;
- All events etc. buffered;
- Many automatics implemented:
 - > Automatic RG, TB, Track, Search Mode etc.
 - **Better / faster due to kHz rate !**

Real Time Return Identification

- Last 1000 Residuals kept in memory; new resid compared to these;
- If enough (e.g. 5) resids are within a band (e.g. 100 ps) of new resid: IDENT
- Minimum # and bandwidth are variable, set by system, automatics, observer;
- ID resids (yellow) filled into histogram (right); max. bin only displayed;
- Max Bin value used to guide RG automatics etc.

Huge increase of returns per pass; examples:Old: 10 Hz, 35 mJNew: 2 kHz; 0.4 mJ

LAGEOS:	14.000	up to 400.000 Returns / Pass
• ENVISAT etc:	5.000	up to 400.000 Returns / Pass
• TOPEX:	7.000	up to 750.000 Returns / Pass
• AJISAI:	8.000	> 1.000.000 Returns / Pass 😳
• GPS 35/36:	300	about 10.000 Returns / Hour


Huge increase in returns per NP; examples:

LAGEOS: Up to 35.000 Returns / NP
STARLETTE: Up to 42.000 Returns / NP
AJISAI: Up to 50.000 Returns / NP

In NP File: We state ,,9999" if actual number exceeds that $\boldsymbol{\bigotimes}$

Starlette at 10 Hz System: 26 Rets / NP average 😕

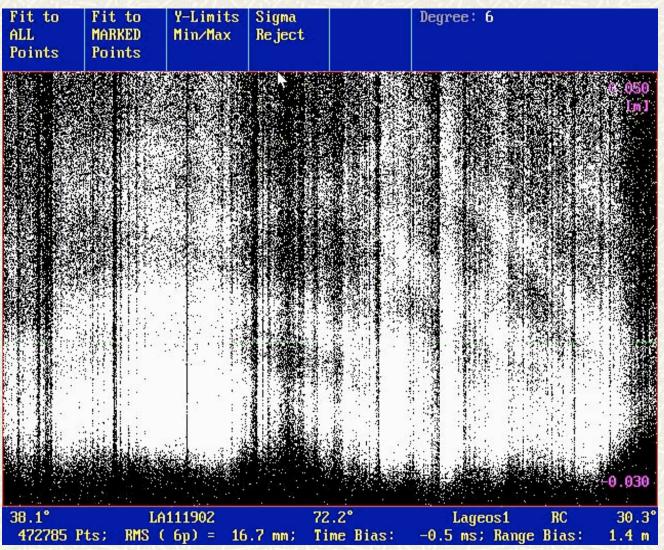
- Day & Night: Similar results / amount of data;
- NPs: Only delivered if > 100 Returns / NP (③)
- Automatic routines: Faster / better due to kHz;
- Acquiring is easier / faster due to kHz
- Single Shot Accuracy: 2.5 3.5 mm (LEOs)
 - Better due to 10 ps, and uniform pulses;
 - > Worse: More Sat signature at lower energy;

Example: Lageos 1, Raw data

LA1 119 02:

- 570 k points recorded;
- 380 k returns;
- 7.6 mm RMS;
- <1% side tracks</p>
- White: Ident.
- Yellow: Noise;
- No other noise stored;

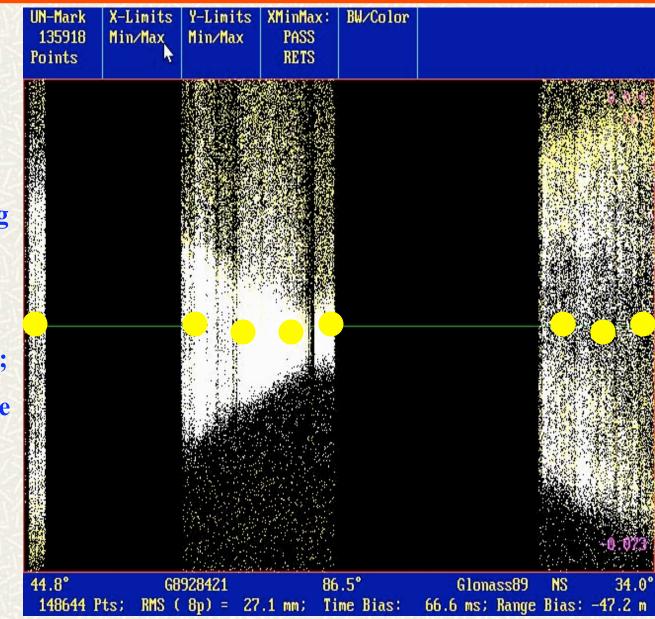
UN-Mark 522094 Points	X-Limits Min∕Max	Y-Limits Min∕Max	XMinMax: PASS RETS	BROOM Points Elimin.			
			•				2.677 [m]
	ja 1995. – Jane Jacobski kalendar 1996. – Jacobski kalendar		n Artaria - Arina		arra tana 1991	ent ora en e	ana ana s
6 1 11 - 14 14 14 14 14 14 14 14 14 14 14 14 14	ور من مر من م	17. e. un 196 en 19			ka i aka		
*		u Meneral	<u>ب</u> د د.				
an sele e selente	19726-1986 (* 1986) - A. Joseffer & Million						n de terre ange it redetter 2
							-1.339
38.1° 572446 P		111902 5p) = 116		2.2° ime Bias:	Lageos -0.4 ms; I	s1 RC Range Bias	



Same Lageos 1 pass ...

LA1 119 02:

- Retro Clusters;
- Only Returns from nearest Retro used for NP formation;
- 362 k Returns remaining;
- 7.6 mm RMS;



Glonass: Retro Panels visible

G89 284 21:

- 311 k Returns;
- 135 k Rets remaining
- White: Identified;
- Yellow: Noise;
- Shows Retro Panels;
- NPs: Show only some strange average ...
 (CoM constant ???)

- Last year in Koetzting after only 2 weeks of 2 kHz operation - we asked:
 - IS kHz the FUTURE OF SLR ???
- This year in San Fernando, after 8 months of experience with 2 kHz operation, our answer is:

(That means: YES – we think so ...)