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INTRODUCTION 
Improper interpolation methods can have devastating effects on Normal Point (NP) 
accuracy, telescope pointing accuracy, and indeed any other performance measure. 
 
The issue was raised by Werner Gurtner at the 13th Workshop (Gurtner, 2002), was 
subsequently discussed by the ILRS Prediction Format Study Group on 9 April 2003 
in Nice, France (Seemueller 2003), and presented at the Koetzting Workshop (Luck 
2003). This study quantifies the effects of interpolation errors on the accuracy of SLR 
NPs, and also looks at LLR and at telescope pointing errors. 
 
The crux of the issue is the tabular interval used for interpolating the predictions used 
in generating the NPs. The type of interpolating function (cubic spline or Lagrange) 
and its degree are also important. For example, the Orroral predictions were integrated 
in steps equal to the NP bin sizes recommended by ILRS, which thus formed the 
tabular points on which subsequent interpolations were based. The tabular intervals 
between these points are much too large for successful low-order interpolation, and 
can produce many nanoseconds of error in the shot-by-shot predictions and minutes 
of arc in the pointing. It is shown that the effects on NP generation can amount to 
errors of several centimeters, in the worst case being 1/3 of the interpolation error. 
 
It is recommended to tighten the ILRS Normal Point Algorithm. Several addenda 
address interpolation errors in pointing angles which can be large and oscillatory; the 
best order of Lagrange interpolation to use, and a computationally convenient version 
of Lagrange’s formula. 
 
INTERPOLATION ERRORS 
Test data 
The satellite data used in this study were kindly supplied by Chris Moore of EOSSS. 
They consist of the predictions in range, azimuth and elevation integrated from real 
IRVs in steps of 1 second. These 1-second points are taken to be “truth”, i.e. perfect. 
The tabular points for the interpolation tests were then simply chosen as every k-th 
point from that set, where the tabular interval is k seconds. They are equally spaced. 
 
The tests consisted of interpolating using cubic splines, which have desirable 
continuity properties, and Lagrange’s formula based on 4 points (order 4), i.e. a cubic 
to match the splines, and on 6 (order 6) or more points, then subtracting the “true” 
values from the outcomes. See for example (Dahlquist & Bjorck 1974). 
 
For LAGEOS predictions, tabular intervals of 60 seconds were used rather than the 
ILRS bin size of 120 seconds. For Apollo-15, either the old value of 900 seconds, or 
120 seconds, was used, generated by a revision of the classical program EULER.  
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Test results 
The results are summarized in Table 1. The following graphs are a selection of those 
generated. They cover a variety of maximum elevations. The maximum interpolation 
errors are often several nanoseconds, or at best several hundred picoseconds. The 
improvements caused by increasing the Lagrange order (Fig. 1), and by reducing the 
tabular interval (Fig. 3), are evident by comparing the ‘Range Error’ scales of the 
graphs. Fig. 2 illustrates the typical periodicity in the error, while Fig. 4 shows how 
bad a perfectly ordinary pass can be. Fig. 2 reveals that spline interpolation errors are 
smooth, whereas Fig. 1(a) shows the spikiness of  Lagrange interpolation errors at the 
tabular points. Fig. 5 illustrates that lunar ranging is not exempt from these errors. 
 
Table 1: MAXIMUM INTERPOLATION ERROR MAGNITUDES,  

   Cubic  Splines, and Lagrangians of given order 
Az. Error 
(arcsec) 

El. Error 
(arcsec) 

Range Error 
(nanosec) 

PASS Max.
El 

(deg) 

Num 
Pts 

Tab. 
Int 

(sec) 

Lagr. 
order 

Spln Lagr Spln Lagr Spln Lagr 
15 4 Huge huge 420 340 1.0 9.5 AJISAI-1 

 
87.7 1468 

15 6 Huge huge 415 410 3.2 0.5 
AJISAI-2 72.8 1451 5 10 - - - - .011 tiny 

60 4 Huge huge huge huge 1.5 11.8 
60 6 600 950 55 75 1.3 0.04 

LGEOS1-1 
 

84.5 4183 

60 10 - 400 - 160 - tiny 
60 4 - - - - 2.3 6.0 LGEOS1-2 

 
31.0 3483 

60 6 - - - - 2.3 tiny 
200 4 - - - - 0.75 1.45 ETLON1 

 
62.8 2536

3 200 6 - - - - 0.75 tiny 
STELLA 37.8 887 15 6 0.5 0.2 0.12 0.08 3.6 0.8 

10 4 0.3 2.2 0.2 1.6 2.7 24.0 
10 6 0.3 0.1 0.2 0.03 2.7  0.6 

CHAMP-1 
 

25.4 582 

5 6 - - - - 0.15 0.01 
5 4 0.55 4.5 0.3 2.5 0.7 6.5 CHAMP-2 

 
51.7 615 

5 6 0.55 0.3 0.3 tiny 0.7 0.1 
900 4 70. 390 5 20 11.5 2.3 917 
900 10 - 38 - 2 - 0.09 
120 4 0.02 0.17 0.02 0.02 0.7 0.73 

APO-15 82.1 

5533 
120 10 0.02 0.08 0.02 0.02 0.7 0.07 

Note that Cubic Splines (order 4) outperform Lagrange Interpolation of order 
4.However, Lagrange Interpolations of order 6 outperform Cubic Splines 
substantially, and even higher order Lagranges do vastly better. 
 
 
 
 
 
 
 
 
 
 

LGEOS1_10160509 RANGE ERRORS 
Max.El 84.5 deg,  Tab.Int 60 secs, Lagr order 4
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LGEOS1_10160509 RANGE ERRORS 
Max.El 84.5 deg,  Tab.Int 60 secs,  Lagr order 6
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Figure 1:  High LAGEOS-1 pass. Note poor behaviour of both at start and end.       
(a) Lagrange order 4 to match cubic splines. (b) Lagrange order 6. 
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Figure 2: The start of a fairly high AJISAI pass, clearly showing the error periodicity. 
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Figure 3: Range interpolation errors for a low CHAMP pass, Lagrange order 6. 

    (a) at 10-second tabular interval.  (b) at 5 second tabular interval. 
    Note the ‘Range Error’ scales! 
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Figure 4: A moderate-elevation STELLA pass. Lagrange errors are significant even 

at order 6. 
 
 APO15, 4 Jun'04 Range Interpolation Errors

10 sec data, 120 sec nodes, Lagrange Order 4
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APO15, 4 Jun'04 Range Interpolation Errors
 Lagrange Order 4
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Figure 5: Apollo-15 Range interpolation errors for Lagrange order 4. 
     (a) 900 second, and (b) 120 second tabular intervals. 
 

     



NORMAL POINT GENERATION 
 
ILRS Algorithm 
The 1997 ILRS Normal Point Algorithm is given in the website: 
  http://ilrs.gsfc.nasa.gov/products_formats_procedures/normal_point/np_algo.html . 
It is summarized here and in Fig. 6, with some expansion of notation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: The NP Algorithm in the presence of interpolation error. 
 
(1) Use high precision predictions to generate prediction residuals  
where j indexes all returns in the pass. 

j jPR O P= − j

(2) Use a suitable range window to remove large outliers. 
(3) Solve for a set of parameters . . . to remove the systematic trends of the prediction 
residuals, giving the trend function ( )f PR . 
(4) Compute fit residuals  and omit outliers. (j jFR PR f PR= − )j

(5) Iterate steps (3) and (4) until the process converges. 
(6) Subdivide the accepted fit residuals  into bins at fixed intervals. jFR

(7) Compute the mean value iFR , the mean epoch t  and the number  within a 
bin i . 

in

(8) Locate the particular observation  with its fit residual  and epoch t  such 
that 

iO iFR i

it t−  is minimum. 

(9) The NP is computed as  i i iNP O FR FR= − + i

i

j

. 
(10) Compute the RMSi for bin i. 
(11) Report . , , ,i i it NP n RMS
 
Simple Case 
To clarify the argument without (I believe) compromising its general validity, suppose 
that, in a single bin i, the observed ranges happen to be approximately constant with 
values: 

0
( )

 where 0j j
j bin i

O O O Oδ δ
∈

= + =∑   

as shown in Fig. 6. In particular, the observed value of the point selected in step (8) 
above is: 
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0i iO O Oδ= + ,  

and the value of the NP should be simply . The prediction residual  for this 
point is then, from step (1): 

0O iPR

0 .i iPR O O Piδ= + −  
The trend function is fitted through all the  in the pass after filtering (steps (3) and 
(4)). It therefore smoothes out the short-period interpolation errors illustrated in Figs. 
1-5. Suppose that it happens to be very well-behaved in bin i, in fact constant: 

jPR

 ( )j .f PR f=  
Then the fit residual (step (4)) for the selected observation is: 

  
0

i i

i i

FR PR f
O O Pδ

= −
= + − − f

while the average fit residual within the bin (step (7)) is: 
 0   since  0.jFR O P f Oδ= − − =∑  
Step (9) then yields after some simple manipulation: 
 0 ( )i iNP O P P= + − .  

( ).iP P−The true result is therefore perturbed by the prediction error  
 
Magnitude of the Prediction Error 
From the graphs, it seems reasonable to model as a first step the interpolation errors 
by a quadratic function between the tabular points at  bounding bin i. (It is more 
likely a quartic, especially for cubic splines.) Let the prediction interpolation error be 
denoted by  so that at the representative point: 

0 1,t t

iP∆

 
( ) , and similarly

( ) , averaged over ( )
i i iP P true P

P P true P j bin i

= + ∆

= + ∆ ∈
 

Since i is selected close to the mean point, we have: 

 
( ) ( )i

i i

P true P true

P P P P

≈

∴ − ≈ ∆ −∆
 

The interpolation error model will thus be: 
( )(0 14jP t t tβ∆ = − − )t

1

 
which is zero at 0  and t t t t= = , and its maximum value is:  

( )2
1 0 0 1(max)  at ( ) / 2.jP t t t t tβ∆ = − = +  

Its mean value is: 

 

1 1

0 0

22
1 03

/  if considered uniformly dense 

( )

t t

j
t t

P P dt dt

t tβ

∆ = ∆

= −

∫ ∫  

Hence the Normal Point Error can be as large as: 
( 21

1 03(max) (max)i iNP P P t tβ∆ ≡ ∆ −∆ = − )      (1) 
and β is read from the relevant graphs above. From the examples shown, the errors 
can be many centimeters. 

     



Because the distribution of observations within bins is usually non-uniform, and 
because the NP error reduces to zero at the tabular points (net points, nodes, knots), it 
will behave something like a random variable with unknown properties but no greater 
than this maximum. The effects on NP accuracy, and on the ILRS metric “Normal 
Point Precision”, could be disastrous. 
 
SOLUTIONS 
There are many possible solutions, based on the well-known properties of the errors in 
polynomial interpolation. If the formula uses n points (degree n-1), the tabular interval 
is h, the nth derivative at some point ξ  in ( )0 1,t t  is ( ) ( )nf ξ  and the underlying 
interpolating polynomial is ( )np t , the error ( )tε  is: 

( )( ) ( ) ( ) / !n n
nt h p t f nε = ξ        (2) 

The solutions include: 
 
More Appropriate Interpolation Formulae 
1. Increase the order n. This can be done easily with Lagrange-based formulae such 

as Newton, Bessel, Everett, etc., but is not available with cubic splines. 
2. Reduce the tabular interval h. In the context of this study, it implies that the step 

size of the orbit integration must be no greater than h. Since the NP bin sizes are 
set by ILRS, it also implies that any one NP bin will generally contain several 
tabular points. It is NOT RECOMMENDED to retain a larger integration step-size 
and reduce the tabular interval by interpolation! Decreasing the integration step-
size does not add significant rounding error (Chris Moore, private communication, 
2003). 

 
Different Trend Function Regime 
3. We note that step (3) of the ILRS Procedure - iteratively fit a trend function - is 

designed mainly for filtering, but it is also used for calculating the mean fit 
residual within a bin in step (7). If a new trend function, e.g. a quadratic, is 
calculated from only the prediction residuals within each bin, it automatically 
removes (much of) the interpolation error. 

 
Interpolate on Cartesian Coordinates 
4. The 1-second files available for this study only contained range, azimuth and 

elevation. It was found that, by converting them back to topocentric Cartesian 
coordinates (East, North, Up) for the interpolations, the errors reduced 
dramatically. This can be readily understood by noting that the conversion 
equations: 

2 2 2

1

1

tan ( / )
sin ( / )

range X Y Z
azimuth X Y

elevation Z range

−

−

= + +

=

=

       (3) 

are not at all well represented by polynomials of any reasonable degree. See 
Addendum 2. 

5. Werner Gurtner and Chris Moore have found that interpolating on Geocentric 
Cartesian coordinates, then converting to range, azimuth and elevation on every 
shot, also produces dramatic improvements. This is studied in more detail in 
Addendum 3. 

     



CONCLUSIONS 
The accuracy and precision of NPs may be corrupted badly by inappropriate 
interpolation of the predictions. The magnitude of the resulting NP error in any bin 
may be as much as 1/3 of the magnitude of the interpolation error (see equation (1)) 
and amount to very many centimeters. They behave as unmodeled random errors so 
may be quite difficult to detect. 
 
It is crucial to use tabular intervals as small as possible, consistent with memory size 
and speed limitations; and to take great care in choosing an interpolation formula 
which is appropriate to the function tabular interval being interpolated. The degree of 
the interpolating polynomial must not be too low nor too high. 
 
Interpolation into tables of range, azimuth and elevations should be avoided. Rather, 
interpolate on Cartesian X,Y,Z coordinates. 
 
The ILRS NP Procedure requires “high precision predictions” but is otherwise not 
specific and does not, as written, cope adequately with the problem. 
 
RECOMMENDATIONS 
1. It is recommended that this issue be considered by the Data Formats and 

Procedures Working Group, and that appropriate warnings be included in the 
ILRS Normal Point Algorithm document. 

2. Interpolation should be performed on Cartesian coordinates, NOT on azimuth, 
elevation and range, using a Lagrange (or equivalent) interpolator of order 8. 
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ADDENDUM 1: INTERPOLATION ERRORS IN POINTING ANGLES 
 
The same problem affects pointing. Extreme examples are shown in Figs. 7-9. 
 

AJISAI_10141604 ELEVATION ERRORS 
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Figure 7: Elevation errors from interpolation errors near TCA on a high AJISAI pass. 
 
 LGEOS1_10160509 ELEVATION ERRORS 

Max.El 84.5 deg,  Tab.Int. 60 secs,  Lagr order 6
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LGEOS1_10160509 AZIMUTH ERRORS 
Max.El 84.5 deg,  Tab.Int 60 secs,  Lagr order 6
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Figure 8: Interpolation-induced errors on a high LAGEOS pass. 
    (a) Azimuth. (b) Elevation. 
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Figure 9: The worst of interpolation errors in azimuth and elevation angles during an 

     Apollo-15 “pass”, selected around time of maximum elevation. 

     



 
ADDENDUM 2: GENERAL NOTE ON INTERPOLATION DEGREE 
 
In Step (3) of the NP Algorithm description, it is noted: “. . while not introducing 
spurious high-frequency signals (as can occur by fitting a high-order polynomial).” As 
part of a wider study on interpolation techniques and limitations, I fitted polynomials 
of degree up to 19 to the 1-second predictions (NOT the Prediction Residuals!) in 
azimuth, elevation and range, and in topocentric X,Y,Z (East, North, Up), over entire 
passes using Least Squares. The results are summarized in Table 2 in terms of the 
RMS of the (Raw - Fitted) differences.  Consistent with the remarks in SOLUTIONS  
4. above, it was found that such fits converged in X,Y,Z at degrees 8 to 12, while 
azimuth, elevation and range did not converge even up to degree 19, although the 
(truncated) ETALON pass came close and actually converged in range at degree 9. 
 
TABLE 2: Least Squares Polynomial Fits to Pass Predictions. 

Degree at which RMS 
reaches 5 ps 

RMS of Degree 19 Fit PASS El @ 
TCA 
(deg) X (E) Y (N) Z (U) Az 

(arcsec)
El 

(arcsec) 
Range 

(nanosec) 
AJISAI-A 87.7 10 9 10 32589 3373 374.4 
AJISAI-B 72.8 12 12 11 3573 865 299.0 
LGEOS1-A 84.5 10 10 11 12165 1255 922.3 
LGEOS1-B 53.7 10 10 10 19 7 119.6 
LGEOS1-C 31.0 10 8 10 6 1 136.6 
ETALON1 62.8 6 6 7 (0 at 

degr 6)
(0 at 

degr 6) 
(0.034 at 

degr 9) 
STELLA-A 37.8 9 9 9 44 30 238.5 
STELLA-B 73.5 9 10 10 6598 1835 > 1000 
CHAMP-A 25.4 8 8 8 16 13 105.6 
CHAMP-B 51.7 8 8 8 1386 776 > 1000 
 
There is a clear correlation between badness-of-fit and maximum elevation when 
fitting to azimuth and elevation. 
 
To illustrate the spurious signals appearing after convergence, Fig. 10 shows plots of 
(Raw - Fitted) differences in X for pass STELLA-A in which the RMSs were 0 ps for 
degrees 9-12. It is interesting to note that the divergence comes from the beginning 
and end of the pass rather than from periodicities within. 
 
As a side comment, the condition number (κ ) of the Normal Matrix inversion process 
increases vastly with increasing fit degree, and is unacceptably large at d = 2 anyway. 
This indicates that the coefficients of any of the fitted polynomials are absurdly highly 
correlated. Fitting Chebyshev polynomials gave condition numbers 1.0κ ≈ right up to 
degree 19, as expected from the theory of orthogonal polynomials, which is the ideal 
and indicates that the coefficients are completely uncorrelated. However, they did not 
change the RMSs one little bit. 

     



 
STELLA 09130811: X(East) RESIDUALS FROM POLY FITS
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Figure 10: Residuals of predictions in X (Raw - Fitted) for increasing orders of fit  

      after convergence which occurs at degree 9 (order 10). 
 
ADDENDUM 3: MAXIMUM TABULAR INTERVALS 
 
The proposed ILRS Consolidated Predictions Format (CPF) (Ricklefs, 2004) 
advocates the dissemination of predictions in body-fixed X,Y,Z coordinates, at 
nominated tabular intervals per satellite, to replace IRVs. The magnitudes of 
interpolation errors as functions of tabular interval and of order were studied, ignoring 
all other error sources, in 4 coordinate systems: 
I: Celestial True-of-Date X,Y,Z, using data at 1-second intervals, again kindly 
supplied by Chris Moore. These constituted (quasi-) inertial coordinates. 
G: Body-fixed in Greenwich X,Y,Z, emulating the CPF scheme. They were generated 
from “I” by rotating through sidereal time. UT1-UTC and polar motion were ignored. 
T: Topocentric East-North-Up. They were generated from “G” by the usual 
transformations involving geodetic latitude, longitude and ellipsoid height for the new 
Stromlo station 7825. 
P: Polar, i.e. range, azimuth and elevation at the station, generated from “T” by 
equations (3). 
 
The interpolation errors were characterized by what I loosely call their RSS values 
(actually, RMS about zero mean), for this purpose defined by: 

    ( )2

1

( ) Interpolated range - True range /
n

i

RSS range n
=

= ∑  

where the sum is over all 1-second points in about a day; and similarly for azimuth 
and elevation. The results for LAGEOS are shown in Fig. 11 as log-log graphs against 
tabular intervals of 15, 30, 60, 120, 240, 480 and 960 seconds using the equal-spaced 
Lagrange formulae for orders 4, 6, 8, 10 and 12. Similar graphs were obtained for 
CHAMP, STARLETTE, AJISAI and GPS35. The “floors” in the graphs are due to 
rounding errors when subtracting large numbers, and are very negligible. Otherwise, 
the curves for Cartesian frames are linear, consistent with equation (2). For any given 
order, the graphs when interpolating into the three Cartesian systems I, G and T are 
indistinguishable, and are all far better than for the Polar system P. 

     



Table 3 gives the tabular intervals read from the graphs required to keep the 
interpolation errors (RSS) below 1 ns (just for target acquisition) and 10 ps (for NP 
generation) in range, and 1 second of arc in azimuth and elevation. It is evident that 
the CPF Recommendations are satisfactory, provided that order 8 is used on the body-
fixed Cartesian predictions to be supplied. 
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Figure 11: Typical errors due only to interpolation, for LAGEOS over approx. 1 day. 
 
Table 3: Tabular intervals to yield required error specifications 

 

Maximum Grid Spacings (seconds) 
when using 8th-order Lagrange Interpolation 

CPF Rec. 

RANGE AZIMUTH ELEVATION 

 
 
 
Satellite 

1 ns 10 ps 1 arcsec 1 arcsec
Deg 7 Deg 9 

Champ 234 127 441 456 120 180 
Starlette 240 127 466 519 180 240 
Ajisai 310 170 617 628 240 300 
Lageos 501 280 1097 1118 300 600 
GPS35 1360 763 2970 3160 900 1800 

 ALL REFER ENC E FRA M ES

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

10 100 1000
P r e dic t ion S pa c i ng ( se c onds)

I,L08

G,L08

T,L08

P,L08

LAGEOS Interpolation Error RSS:
RANGE 

Int erpolat ion on GREENWI CH X,Y,Z

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

10 100 1000

P r e di c t i on S pa c i ng ( se c onds)

G,L04

G,L06

G,L08

G,L10

G,L12

LAGEOS, Interpolation RSS:
 AZIMUTH, Lagr 8

Int erp'n on 

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

10 100 1000
P r e di c t i on S pa c i ng ( se c onds)

ALL R EFER ENC E FRA M ES

I,L08

G,L08

T,L08

P,L08

LAGEOS Interpolation Error RSS: 
AZIMUTH

Int erpolat ion on 

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

10 100 1000

P r e di c t i on S pa c i ng ( se c onds)

GREENWI CH X,Y,Z

G,L04

G,L06

G,L08

G,L10

G,L12

LAGEOS Interpolation RSS:
 ELEVATION, Lagr 8

Int erp'n on 

1.E-11

1.E-09

1.E-07

1.E-05

1.E-03

1.E-01

1.E+01

1.E+03

1.E+05

10 100 1000
P r e di c t i on S pa c i ng ( se c onds)

ALL R EFER ENC E FRA M ES

I,L08

G,L08

T,L08

P,L08

LAGEOS Interpolation RSS:
 ELEVATION

Int erpolat ion on 

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

1.E+02

10 100 1000

P r e di c t i on S pa c i ng ( se c onds)

GREENWI CH X,Y,Z

G,L04

G,L06

G,L08

G,L10

G,L12

     



ADDENDUM 4: NEWTON’S FORWARD DIFFERENCE FORMULA 
 
As is well known, the Lagrange formulation reduces to (inter alia)  Newton’s 
Forward Difference Formula when the tabular points are equally spaced. Let 

( )i if f t≡  be the given values at the tabular points surrounding the interpolation point 
t, let h be the tabular interval, let n

kf∆  be the forward difference at the first tabular 
point  used, and let 

thn

kt ( ) /kx t t h= − , so 0 1x k≤ < − . Then the interpolated value 
is given by: ( )y t

2 3( 1) ( 1)( 2) ( 1) ( 2)( ) .
2! 3! ( 1)!

n
k k k k

x x x x x x x x ny t f x f f f f
n

−− − − − − +
= + ∆ + ∆ + ∆ + + ∆

−
L

L

kt

1
k

 should be chosen so that t falls in the middle interval used, so for example x will lie 
between 2.0 and 3.0 for a 6-point formula ( 6n = ). The beauty of this is that a matrix 
of coefficients can be pre-computed to enable rapid calculation in real-time by 
Horner’s Rule. Thus, at each tabular point k pre-compute  as: ,k ic

       1
, /( 1)!,   1, , ,   1, , num.tab.ptsi

k i kc f i i n k−= ∆ − = =L L

Then in real-time at time t choose the best k, calculate x and obtain : ( )y t
     . ,1 ,2 ,3 ,( ) [ ( 1)[ ( 2) ] ]k k k k ny t c x c x c x n c= + + − + + − +L L

This pre-computation/Horner rapid-evaluation technique has been claimed as an 
advantage for cubic splines, but it can be applied to any equally-spaced method. 
 

     


