

ILRS Timing Devices Specifications, Error Analysis and BEST Practices

Van Husson, Loyal Stewart NASA SLR/VLBI Program Honeywell Technology Solutions Inc. 7515 Mission Drive Lanham, MD 20706 USA E-mail: van.husson@honeywell-tsi.com, loyal.stewart@honeywell-tsi.com

Laser Ranging Error Sources

			Con	tributes to:
	<u>Category</u>	<u>Component</u>	<u>Jitter</u>	Range Bias
Ranging Machine	Transmitter	Laser	Yes	Yes
	Reciever	Detector package	Yes	Yes
		Timing	Yes	Yes
		Frequency source	Yes	Yes
	Optics	Mount/Telescope	No	Yes
	Control system		Yes	Yes
	Meteorological system	Met. Sensors	No	Yes
Data Reduction	Data smoothing, outlier rej	ection, NP creation	Yes	Yes
Local Survey	Calibration range		No	Yes
Satellite	RRA correction		Yes	Yes

Timing Measurements

- The time (epoch) of laser fire
- The two-way time-of-flight (TOF) of the optical pulse
 - The site removes the calibration constant from the raw satellite TOF and statistically compresses the data into normal points (NP)
 - The analysts convert the NP TOF into a **range** measurement

range = ((NP TOF)*c/2) - atmosphere + satellite CoM - relativity

NASA

Timing Terminology

- **ACCURACY** the deviation of a measurement from a standard. *Example: range bias*.
- **PRECISION** the deviation of a set of measurements about their mean (i.e. does not imply accuracy). *Example: single shot RMS*.
- **RESOLUTION** the minimum differential measurement which can be made. *Example: granularity of a timing device*.
- **STABILITY** a measure of change over time. *Example: range bias stability.*
- **JITTER** the random displacement of a signal from its absolute location. *Example: counter jitter*.
- **LINEARITY** the relative accuracy between measurements. *Example: counter non-linearity*.
- ALLAN DEVIATION non-classical statistic used to estimate stability. *Example: frequency stability*.

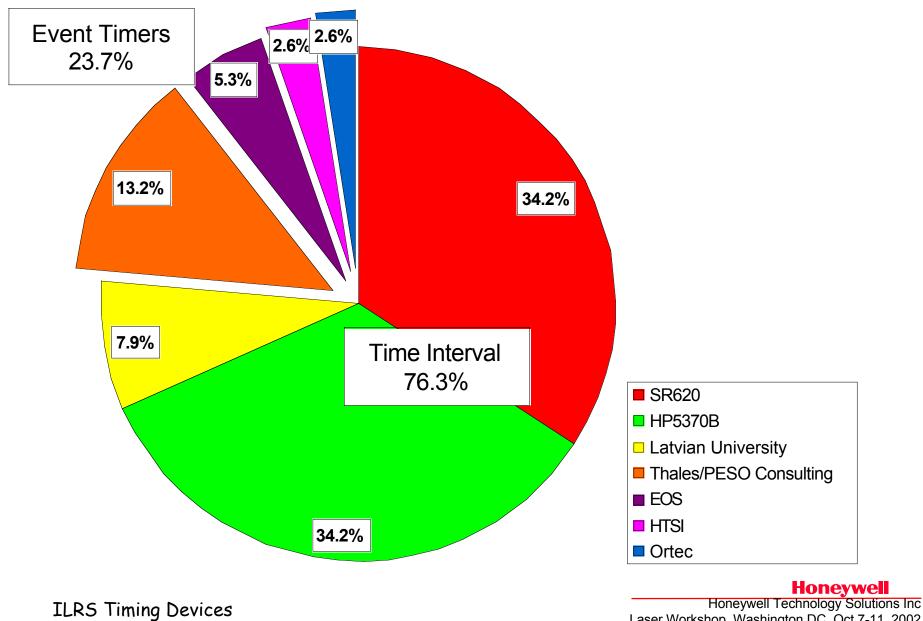
ILRS Timing Devices

Type of Timers

Time Interval

- Measures a time interval between a start and stop (i.e. a single event)
 - **PROS** inexpensive (\leq 10K), can provide sub-cm accuracy with proper care and calibration
 - **CONS** maximum time-of-flight, limits laser repetition rate, requires special test equipment or multiple counters to remove/minimize non-linearity's, may be a limiting factor in 1 mm accuracy

• Event


 Measures epoch of events, the difference between events will produce a time interval (i.e. multi-event capability)

PROS – supports lunar, interplanetary, and KHz ranging, picosecond event timers are **NOT** a limiting factor in 1mm accuracy.

CONS – picosecond level event timers are expensive

ILRS Timers (Oct 2002)

Laser Workshop, Washington DC, Oct 7-11, 2002

ILRS Timers Specifications

										Max
			Resolution	Jitter	Linearity	Stability	Stability	Warm-up	Max. rep.	Tof
Manufacturer	Model	Year	(ps)	(ps)	(ps)	[ps/K]	[ps/H]	(hours)	rate (Hz)	(secs)
SR	620	1988	4	22	50	5-10	3	1	100	1000
HP	5370B	1982	20	35	20			0.33	10	10
Latvian	A013	2002	10	20	2		0.1	2	80	0.209
EG&G - Ortec	TD811		100			40				N.A.
Peso Consulting	PET 4	1999	1.2	3.5	2.5	0.2	<0.5	4	>100	N.A.
EOS	MRCS V.4	1998	2	10	2	2	1		2000	N.A.
HTSI	MLRO	1998	<2	<4	2		0.5	1	2000	N.A.

Simplified Timer Error Analysis Accuracy =

measurement resolution ± timebase error (f_0/f_0) * time interval ± trigger errors (start and stop) ± systematic error

To maximize accuracy:

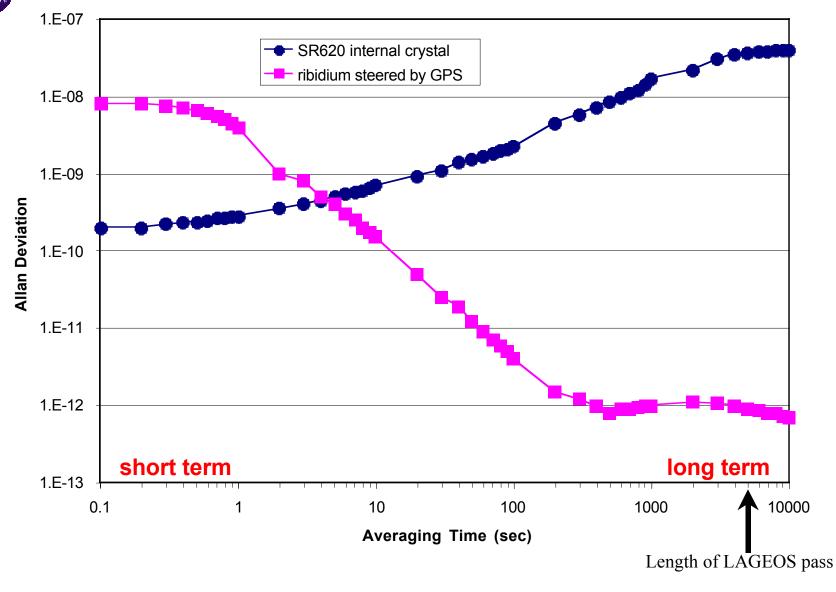
- Increase the laser repetition rate (improves measurement resolution)
- Use a stable external frequency source (eliminates timebase error)
- 3. Minimize the noise on the input signal by careful grounding and shielding (reduces **trigger error**)
- 4. Implement multiple timers or calibrate counter and obey proper warm-up time and environmental conditions (removes or minimizes systematic error)
 ILRS Timing Devices

Timebase Error (f_0/f_0) at SLR Time Intervals

	LEO	LAGEOS	High	Lunar	Mars
Frequency Stability	(25ms)	(60ms)	(200ms)	(2500ms)	(1,000,700ms)
1.E-07	374.741	899.377	3297.717	37474.057	15000000.000
1.E-08	37.474	89.938	329.772	3747.406	1500000.000
1.E-09	3.747	8.994	32.977	374.741	150000.000
1.E-10	0.375	0.899	3.298	37.474	15000.000
1.E-11	0.037	0.090	0.330	3.747	1500.000
1.E-12	0.004	0.009	0.033	0.375	150.000
1.E-13	0.000	0.001	0.003	0.037	15.000
1.E-14	0.000	0.000	0.000	0.004	1.500
1.E-15	0.000	0.000	0.000	0.000	0.150
1.E-16	0.000	0.000	0.000	0.000	0.015

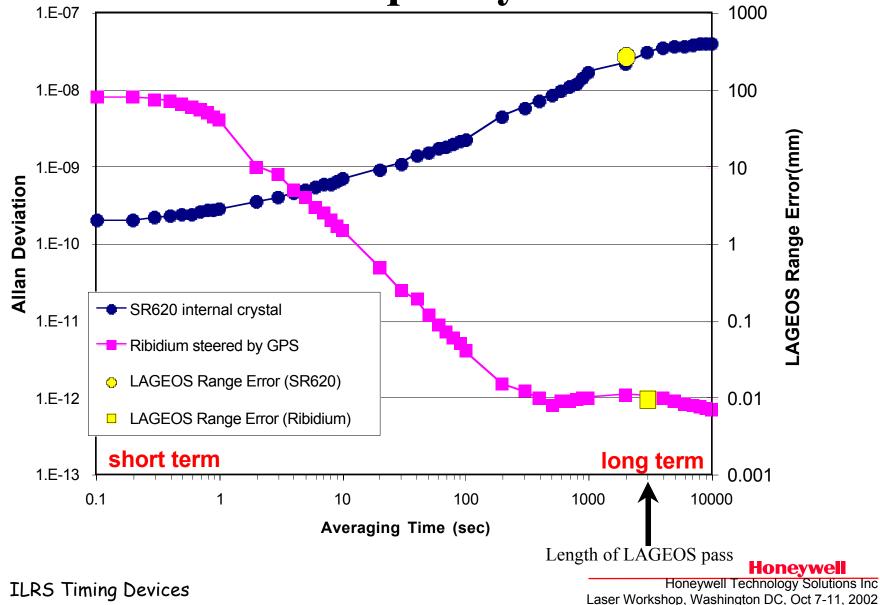
f/f_0

f_0/f_0 is the stability of the external master oscillator

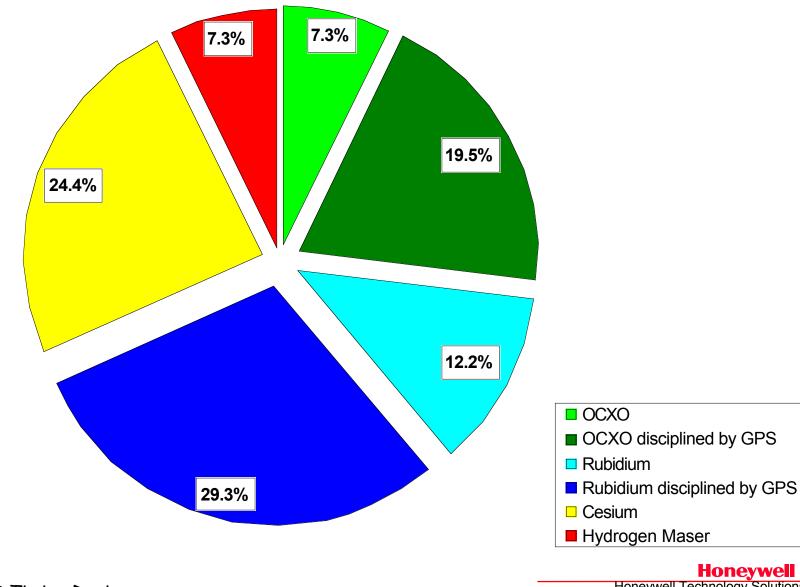

Oscillator Comparisons

Long Term Frequency Stability	Crystal Performance Range	Rubidium Performance Range	Cesium Performance Range	Hydrogen Maser Performance Range
1.E-07				
1.E-08				
1.E-09				
1.E-10				
1.E-11				
1.E-12				
1.E-13				
1.E-14				
1.E-15				
1.E-16				

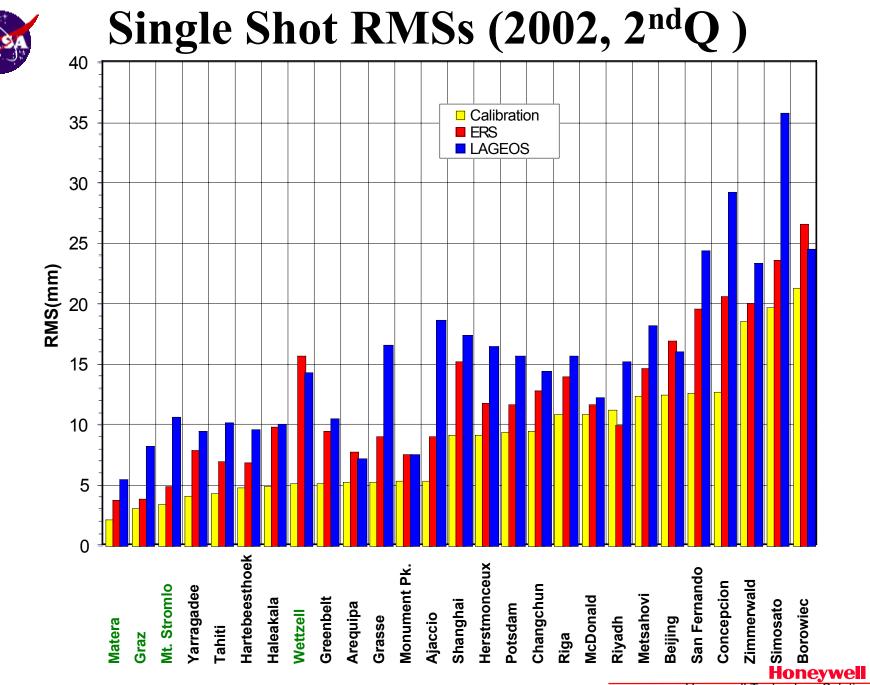
Type of Oscillators	Pros	Cons	Comments
Oven Controlled Crystal	cheap, excellent short term stability, durable	generally poor long term stability for SLR, variable performance based on the type and make of crystal	long term stability can be enhanced by GPS steering
Atomic			
Rubidium	cheaper than a cesium, good short term stability	long term stability not as good as cesium, the rubidium will need replacement	
Cesium	good short term and long term stability	not cheap, cesium tubes will eventually need to be replaced and will be costly, environmental controls	
Hydrogen Maser	excellent long term stability	expensive, requires more power and space, strict environmental control	
	•		He


Honeywell Technology Solutions Inc Laser Workshop, Washington DC, Oct 7-11, 2002

Frequency Stability Comparison



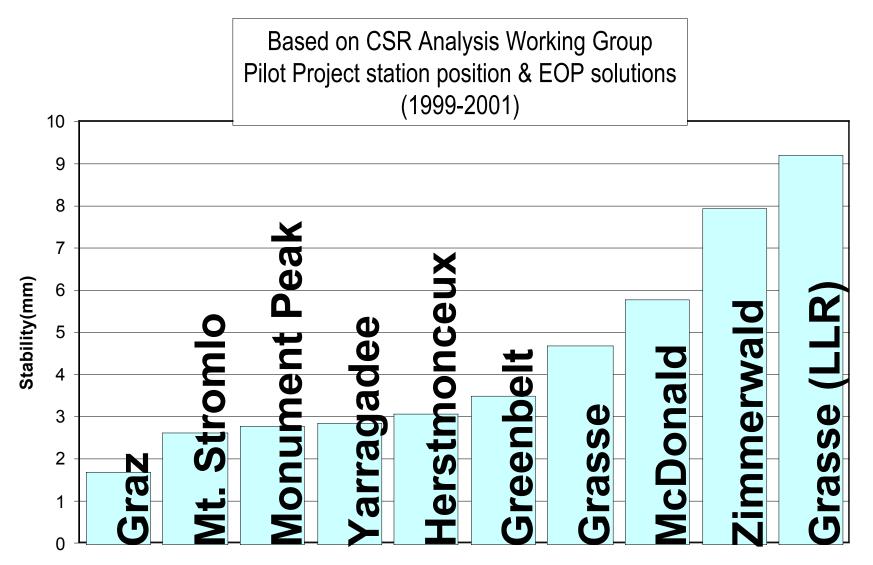
LAGEOS Range Error due to Frequency Error



ILRS Frequency Devices (October 2002)

Honeywell Technology Solutions Inc Laser Workshop, Washington DC, Oct 7-11, 2002

ILRS Timing Devices



ILRS Timing Devices

Honeywell Technology Solutions Inc Laser Workshop, Washington DC, Oct 7-11, 2002

Long Term Range Bias Stability

BEST Practices

- Maintain strict environmental **temperature** control
- Minimize noise on the incoming timing signal with **good grounding and shielding**
- Allow for adequate **equipment warm-up**
- Use an **external oscillator**
- If you use a SR620 or HP5370B have them calibrated or clustered

Conclusions

- With proper care and calibration, the current ILRS timers can support sub-cm accuracy
- The picosecond-event timers can support 1mm absolute accuracies and are not a limiting factor in the ranging machine