Difference of LAGEOS satellite response from raw data analysis of the collocation experiment between the Grasse Satellite and Lunar Laser Ranging stations

J. Nicolas, J.F. Mangin, G. Métris, and F. Barlier

Observatoire de la Côte d'Azur - CERGA Avenue N. Copernic - F-06130 Grasse - France

October, 7-11 2002

Overview

- Introduction and context of the study
- LAGEOS satellites
- Grasse SLR and LLR stations differences
- Method
- Results
- Discussion
- Conclusion and prospect

October, 7-11 2002

Introduction

- Collocation experiment between the 3 Grasse laser stations (SLR, LLR, and FTLRS) at the end of 2001 (3 months)
- Analysis of LAGEOS common normal points
 - → Difference of 13 mm between LLR and SLR

- Evaluate the LAGEOS satellite response difference from:
 - geometrical considerations
 - station instrumental differences

October, 7-11 2002

LAGEOS satellites

- LAser GEOdynamics Satellite
- Reference for accurate station positioning
- LAGEOS-1 (1976) and LAGEOS-2 (1992)

- ~ 6000 km altitude (circular orbits)
- inclination LA1: 110°, LA2: 53°
- 2 identical satellites:
 - 60 cm diameter sphere
 - $-\sim 400 \; kg$
 - area/mass = 0.00069 m_/kg

LAGEOS CCRs

90.00

79.88

70.15 60.42

50.69

40.96 31.23

22.98

13.25

4.86

- 4.87

-13.25

-22.98

-31.23

-40.96

-50.69

-60.42

-70.15

-79.88

-90.00

- 426 Cube Corner Reflectors (CCRs) → 422 Silica + 4 Germanium *
 - \Rightarrow 2x10 rows

1

P. Avizonis, 1997

row number CCR number Latitude (°) 1 *

Grasse SLR and LLR station characteristic differences

	SLR	LLR
telescope diameter	1.00 m	1.54 m
laser	Nd:YAG	Nd:YAG
	532 nm	532 nm
	40 ps	20 ps
	10 Hz	10 Hz
	divergent	parallel beam
calibration	semi-internal	internal
	post-pass	real time
return photodetector	C-SPAD	APD
return level	multi-photon	single photon

October, 7-11 2002

Method of computation

- Computation of the contribution of each CCRs row in the reflected signal for a given incident angle and a given pulse width
- Computation of the corresponding delay for each CCRs row
- Computation of a satellite response histogram (summation of each CCRs row contribution)
- Adjustment of this response amplitude to the real satellite response (raw data)
- Deduction of the corresponding bias for each station and the difference of the range bias between LLR and SLR

Remarks on our computation

- Computations performed for:
 - the single photon electron case
 - LAGEOS -2 raw data
- Treatment of the 426 CCRs as made of fused silica even if 4 are made of germanium
- Hypothesis of an homogeneous repartition of the CCRs on the satellite
- We ignore:
 - the CCRs recess of 1 mm behind the satellite surface and treat the CCRs as coplanar with the satellite surface
 - the satellite spin (a pass => several satellite rotations around itself)
 - the differences of the optical path inside the CCRs depending on the incident angle

October, 7-11 2002

13th International Workshop on Laser Ranging - Washington

Contribution of each CCR row

• Contribution $P = N_{CCR} \times R_{CCR} \times \cos i$ with:

- $N_{CCR} = CCR$ number
- $R_{CCR} = CCR$ reflectance
- i = incident angle
- CCR of row 1 = arbitrary reference unit

Row	N _{CCR}	R _{CCR}	cos i	Р
1	1	1	1	1
2	6	0.5	0.984	2.953
3	12	0.3	0.940	3.386
4	18	0.2	0.870	3.131
5	23	0.1	0.770	1.780
6	27	0.05	0.510	0.885
7	31	0.02	0.656	0.406
8	31	0.01	0.390	0.121

Avizonis, 1997

- Rows 8 and 9 are negligible
- The other rows are invisible

Delay of each CCRs row

• Delay
$$d = \frac{R \sin i}{\tan[(\pi - i)/2]}$$

with: -R = satellite radius -i = incident angle

$$-1 =$$
incident angle

Row	d (mm)
1	0
2	4.7
3	17.8
4	39.1
5	67.9
6	103.3
7	144.5
8	182.9

October, 7-11 2002

Laser beam orientation on the CCRs

- To take into account the spin of the satellite, we consider 2 extreme cases:
 - Case 1 : laser beam direction perpendicular to a CCR face
 - Case 2 : laser beam in the center of 3 CCRs
- All the previous computations are in the case 1

• Supplement delay between case 1 and case 2

Statistical widening of 22 ps of

the CCRs row response

Satellite response

- The satellite response is computed as the convolution of gaussian curves with:
 - a shift given by the delay of each CCRs row
 - the widening of 22 ps computed previously (satellite spin)
 - a width corresponding to each station response (laser, photo-detector, atmosphere ...)
 - 🧼 Realistic values
 - \Rightarrow 63 ps for the LLR (50 ps from the station)
 - \Rightarrow 48 ps for the SLR (40 ps from the station)
- Comparison with the raw data to adjust the computation
- Remarks
 - Computation of a gaussian curve even if non gaussian shape of the photodiode response (especially for the C-SPAD)
 - Uniform laser energy distribution on the satellite

October, 7-11 2002

Model and LLR raw data comparison

LAGEOS -2

(October, 16 - 2001)

- Rows > 4 are over-estimated
- Very low contribution of the rows > 5

- Over-estimation linked to the CCR limit incident angle (35°)
- Attenuation coefficient adjustment from the raw data comparison

October, 7-11 2002

Results

- Example based on the LAGEOS-2 LLR pass of the 16th October 2002
- Adjusted empirical attenuation coefficients

Comparison with SLR measurements

LAGEOS -2

• Attenuation coefficients differ from the LLR case

RowCoef.11.420.8530.540.2550.2

• Differences linked to:

- non gaussian curve for the C-SPAD
- multi photon electron

(October, 17 - 2001)

Bias computation

• Bias from a unique CCR at the satellite surface

• Bias:
$$B = \frac{\sum_{i} d_i \times P_i \times coeff_i}{\sum_{i} P_i}$$

→ LLR bias: (14.8 ± 2) mm
 → SLR bias: (11.8 ± 2) mm

• **BUT** need to add a bias of 9 mm for the LLR (center-edge effect and velocity aberration)

→ Bias difference between LLR and SLR: 12 mm

• Collocation analysis result: 13 mm

Explanation at the level of 1 mm !!!
with realistic empirical evaluations

16

October, 7-11 2002

Center of Mass Correction

- $-r_{sat}$ = satellite radius
- $-l_{CCR} = CCR$ length
- $n_{CCR} = CCR$ refraction index

LLR center of mass correction: 244.2 mm SLR center of mass correction: 247.2 mm

- **BUT** COM standard value: 251 mm
- COM standard value non consistent with the value found from OCA laser station observations

October, 7-11 2002

Conclusion

- Explanation of the difference observed between the OCA SLR and LLR stations at the level of 1 mm by geometrical considerations
- Satellite signature and center of mass correction depend on the laser station characteristics !
- Necessity to use the raw data (these computations can't be performed from the normal points)

