Time-Variable Gravity Analysis Using Satellite-Laser-Ranging as a Tool for Observing Long-Term Changes in the Earth's Systems

<u>C.M. Cox</u>, A. Au Geodynamics Group, Raytheon ITSS NASA Goddard Space Flight Center, Mailstop 926.0, Greenbelt, MD 20771, USA

J.-P. Boy UMBC NASA Goddard Space Flight Center, Mailstop 926.0, Greenbelt, MD 20771, USA

B.F. Chao
Space Geodesy Branch
NASA Goddard Space Flight Center, Mailstop 926.0, Greenbelt, MD 20771, USA

Zonal Rate Solutions - What's is happening?

Study	\dot{J}_2	\dot{J}_{ODD}	\dot{J}_3	\dot{J}_4	\dot{J}_5	\dot{J}_6	18.6-yr Tide C _{2.0} Amp. (cm)
Cheng, et al. [1989]	-2.5±0.3	1.2	-0.1±0.3	0.3±0.6	1.5±1.5		
Nerem & Klosko [1996]	-2.8±0.3	1.6±0.4		0.2±1.5			
Cazenave, et al. [1996]	-3.0±0.5	-1.8±0.1		-0.8±1.5			
Cheng, et al. [1997]	-2.7±0.4	0.5	-1.3±0.5	-1.4±1.0	2.1±0.6	0.3±0.7	1.56±0.2
From GGG2000:							
Base - Data through 1997	-3.0±0.4	0.3	-0.9±0.4	1.4±1.0	1.3±0.4	-1.0±0.6	1.41±0.07
Use only LAGEOS-1, Starlette, and Ajisai	-2.7±0.5	0.1	-0.9±0.5	0.1±1.6	1.2±0.5	-0.5±0.9	1.44±0.08
Upweight LAGEOS-1 2x	-3.1±0.5	0.3	-0.8±0.2	1.2±1.0	1.3±0.3	-0.8±0.5	1.51±0.06
Assume 2 m SLR weight	-2.0±0.3	0.9	-0.8±0.3	-2.7±1.0	1.9±0.4	1.2±0.7	1.54±0.09
Estimate only \dot{J}_{2} , \dot{J}_{5}	-2.4±0.2	0.2	-0.9±0.4	0.1±0.6	1.3±0.4		1.41±0.07
Estimate only \dot{J}_2 , \dot{J}_4	-2.5±0.2	0.3±0.1		0.3±0.6			1.43±0.07
From EGS2001:							
Revised Base – Data through 1997	-3.0±0.3	0.2	-0.5±0.4	1.6±0.8	0.8±0.4	-1.0±0.5	1.41±0.07
+1998-1999	-0.9±0.3	0.5	1.1±0.4	-0.5±0.9	-0.7±0.4	-1.0±0.5	0.82±0.06
+2000	-0.6±0.5	0.5	1.8±0.5	-2.2±0.6	-1.4±0.4	0.2±0.5	0.85±0.06
+1998-2000	-0.2±0.3	0.7	2.6±0.4	-2.4±0.6	-2.3±0.4	0.0±0.5	0.77±0.05
+1998-2000	-1.0±0.3	0.7	2.6±0.4	-2.4±0.6	-1.5±0.4	-0.2±0.5	Fixed @ 1.22

Zonal gravity rate and long period tide solutions. All values are x10⁻¹¹

The lumped J_{odd} rates were computed using the following relation derived from this study:

 $J_{\rm odd} = J_3 + 0.864 \ J_5$

Yearly Zonal Solutions

- Somewhere around 1996-1997 there is a distinct change in the yearly zonal averages
- Zonal rate solution tests show that this change is not attributable to any one spacecraft
 - Changes in the Lageos-1 "anomaly" during this period can not be the cause

Slopes of *simple* linear fits to the recovered zonal time series

Period	J ₂	J_3	J_4
of Fit	Slope	Slope	Slope
80-93	-3.3	0.8	-0.7
80-95	-3.0	0.9	-0.6
80-97	-2.9	0.7	-0.7
80-00	-2.1	0.7	-0.6
96-00	4.4	2.6	-0.5

Slopes of *weighted* linear fits to the recovered zonal time series

Period	J ₂	J_3	J_4
of Fit	Slope	Slope	Slope
80-93	-3.0	0.5	0.3
80-95	-2.6	0.7	-0.5
80-97	-2.6	0.4	-0.8
80-00	-1.6	0.6	-0.9
96-00	4.3	2.5	0.0

Satellite Derived Geopotential Series

- Uses Lageos-1, Lageos-2, Starlette, Stella, Westpac, Ajisai, TOPEX/POSEIDON (T/P), GFZ-1, Etalon-1, and Etalon-2 SLR tracking data, and the DORIS tracking of T/P
- Data weights were based on those resulting from the calibration of longperiod gravity rate and seasonal phase/amplitude solutions of Cox et al. [2000b]
 - ~1-2 m overall for the SLR, relative DORIS/SLR weight matches the POEs
- Data were aggregated into nominal 60-day (pre 92) and 30-day (post 91) periods
 - 30-day periods correspond to three T/P repeat cycles
 - Lageos-1/2 and Etalon-1/2 30-day arcs, Lageos-1 are 90 days in 1979
 - 10-day arcs for the rest
- Tides:
 - The Sa, Ssa, at nominal equilibrium values
 - The 18.6 yr, and 9.3 year tides from the comprehensive solutions
 - The rest of the tides are from the EGM96 solution, with Schrama/Ray background.
- No a priori gravity rates were applied, consequently trends should appear in the plots
- No a priori atmospheric gravity was applied results will contain the effects of atmospheric mass perturbations

Timeline of Precise Satellite Tracking Data

Satellite Tracking Data

Observed J₂

The atmospheric inter-annual variation amplitude is ~.5x10⁻¹⁰
The atmospheric Inter-annual rate alternates between +/- .3 x10⁻¹⁰, as large as the long term observed rate

(Observed J2 - Atmosphere), and Ocean and Ice

•Red: (Observed-NCEP IB)-annual •Black: Pre 1997 fit, slope =-2.8x10⁻¹¹ per year •Blue: GSL inferred J2 change •Purple: T/P SSH Inferred J2 change •Green: Greenland+West Antarctica [Zwally et al., 2001]

Observed J₃

Observed J₃ - NCEP (2D,IB)

(Observed J3 - Atmosphere), and Ocean and Ice

•Red: (Observed-NCEP IB)-annual •Black: Linear fit, slope = 0.9x10⁻¹¹ per year •Blue: GSL inferred J3 change •Purple: T/P SSH Inferred J3 change •Green: Greenland+West Antarctica [Zwally et al., 2001]

•The observed C4,0 does exhibit the same post 97 deviation the C2,0 does

(Observed J4 - Atmosphere), and Ocean and Ice

•Red: (Observed-NCEP IB)-annual
•Black: Linear fit, slope = -0.1x10⁻¹¹ per year
•Blue: GSL inferred J4 change
•Purple: T/P SSH Inferred J4 change
•Green: Greenland+West Antarctica [Zwally et al., 2001]

Observed J2 - What could change the slope?

- First guess: Ice
 - In order to overshadow PGR, Greenland would loose about 500 Gt annually, for a net GSL rate of ~ +1.4 mm/yr
 - Greenland and W. Antarctica implied gravity rates derived from radar altimetry [Zwally, 2001]
 - Ice height -derived GSL for Greenland : -.22 mm/yr
 - Ice height -derived GSL for West Antarctica : -.08 mm/yr
 - Greenland result matches Ice mass balance inferences from inverse solutions using gravity zonals, pole rates and GSL rate
 - Have the wrong sign to explain the deviation
 - East Antarctica?
 - Would need to contribute ~2 mm/yr to GSL, depending on the scenario
 - Glaciers?
 - Using Meier's 1984 numbers, a sea level contribution of ~2 mm/yr is needed
- If it is Ice, where is the change in GSL?

Observed J2 - What could change the slope?

• Atmosphere

- 2D computations based on NCEP do not explain it
 - Excellent annual agreement with J3, implying that the general handling of the data is correct
- What of 3D computations?
 - Differences between 2D and 3D computations are also too small
 - Effect on J2 is only about ~2x10-10, with little interannual variation
 - Effect on J3 near zero
- Water impoundment
 - Really large dams can cause a jump of ~0.2x10⁻¹⁰ in J2, but it's not enough
- Hydrology?
 - Lack of data...presently

J2 Atmospheric Gravity - 2D vs 3D

2D vs. 3D Atmospheric J2

- Core or mantle?
 - Mantle acts too slow
 - Core was assumed to be small
 - W. Kuang of UMBC reviewed his models...under some assumptions changes as large as ~0.5x-11 per year are possible
 - How probable? Remains to be seen... More work
- Ocean
 - Timing of onset corresponds with last big ENSO event
 - T/P SSH data implies changes that are consistent and comparable to the observed gravity changes

The Core and J₂

 J_2 signals (x10¹⁰) from geodynamo simulations. Time scale is non dimensional, but is of the order of decades.

Figure Courtesy of W. Kuang (NASA GSFC)

Sea Surface Temperature and Height EOF/PC

The ECCO assimilation mode ocean model bottom pressure contribution to J_2 The ECCO model run incorporates the TOPEX/POSEIDON altimeter data

ENSO and S2,2?

•Correlation is 0.65with a 12 month delay in the observed series •Implication that ENSO events buildup may be observable •Error bars on monthly observations exceed 1x10⁻¹⁰

Conclusion

- Significant interannual signals at the 1x10⁻¹⁰ level for C2,0 and C3,0
 - Differences in temporal data distribution, weighting, and technique will likely effect results of long-term rate estimation
 - Strong inter-annual periodicity requires long temporal baselines in order to try and recover decadal (and longer) rates
 - Need to improve accounting for mass exchange

Need to account for atmosphere to assess surface mass transport

- Apparent Environmental signals present in more than just Zonals
 - ENSO in S2,2?
 - Atmospheric Mass in 2,1 terms
- Large change in J₂ rate
 - Short term deviation or something more?
 - Not atmosphere
 - Ice Melting scenarios large enough to explain this produce far too much GSL change
 - Ocean?

Changes consistent with extratropic SST and SSH changes