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LLR Science

Gravitational Physics:

• The best test available of the strong equivalence principle (EP)

• A leading test of the weak (composition-dependent) EP

• The best test of time-variation of Newton’s constant, G

• Currently the best probe of relativistic geodetic precession
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Other Science:

• Lunar interior

• Coordinate systems

• Geophysics
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APOLLO Goals/Expectations

• One-millimeter RMS normal point precision

• Test of the strong equivalence principle to 3× 10−5

• Test of the weak equivalence principle with ∆a/a ≈ 10−14

• Measurement of Ġ/G to 10−13 yr−1

• Measurement of geodetic (de Sitter) precession to ∼ 3× 10−4

• Similar order-of-magnitude gains in lunar science, coordinate determi-
nations, etc.
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Where Are We Now?
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APOLLO’s photon rate expectations
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E = laser pulse energy

η = one-way optical throughput

f = narrow-band filter throughput

Q = photon detection efficiency (APD)

n = number of 3.8 cm corner cubes in array

Φ = atmospheric “seeing”

φ = corner cube effective divergence

r = earth-moon distance
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Avalanche Photodiode Array:
Gateway to multiple photons

Lincoln Labs APD Array
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Multi-photon Advantages

• Can arrange for every shot to be calibrated, since 〈Ncal〉 ∼ 5

• Get a range profile (albeit sparse) of the target array with each shot
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Calibration Scheme
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mines laser pulse time to ±15 ps

• Each photon is referenced to this
time (green line)

• Ensemble yields mean (yellow line)
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(∼ 5 min)

• Running average allows offset to
vary with environmental conditions
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Multiplexed Timing Scheme

• The usual event timers are not capable of multiplexing a handful of
photons within a nanosecond

• The Phillips Scientific 7186 Time-to-Digital Converter (TDC) is multi-
plexed with 16 channels per module

• The 7186 is a CAMAC module, and has driven our design accordingly

Phillips Scientific 7186 TDC Properties
Jitter 13 ps
Range 100 ns
Resolution 12-bit (25 ps)
Differential Linearity 25 ps across range
Thermal Stability 100 ppm per ◦C
Features Sparse read, Thresholds, Pedestal
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Timing Diagram

• GPS-disciplined clock (TrueTime XL-DC) at 50 MHz serves as both
frequency reference (7 ps RMS jitter over 2.5 sec) and as digital clock

• TDC measures ∆t between photon event and selected clock pulse,
while digital counters keep track of coarse (20 ns) time

• Common STOP clock pulse selection is synchronized with clock
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lunar photon

lunar photon

lunar photon

STOP clock pulse

TDC measurement

APD Gate (~100 ns)

APD Individual Channels:

50 MHz GPS Clock

optional START
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Block Diagram of Timing Scheme
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Based on counters at 50 MHz, registers, comparators, standard logic...
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APOLLO
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APOLLO Command Module

The ACM is a custom CAMAC single-width module based on a pair of
Altera programmable logic devices, handling the digital logic associated
with:
• counting clock pulses and registering significant epochs

• activating the APD gate at the appropriate time, with tunable width

• providing output enable signals for selecting individual clock
START/STOP pulses for the TDC

• calibrating the TDC with START/STOP pulses N × 20.00 ns apart,
±10 ps

• firing the laser in response to the T/R switch encoder

• various safety features associated with laser fire and APD duty-cycle
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Project Status

• Laser delivered to APO (Continuum Leopard ; 532 nm, <100 ps pulsewidth,
115 mJ/pulse, 20 Hz)

• Timing/Control Electronics nearing completion of assembly/testing; ACM
in production

• Optical design complete, procurement initiated

• Error budget shaping up nicely...
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in production

• Optical design complete, procurement initiated

• Error budget shaping up nicely...

Statistical Error Source RMS Error (ps) One-way Error (mm)
Laser Pulse (95 ps FWHM) 40 6
APD Jitter 30 4.5
TDC Jitter 15 2.2
50 MHz Freq. Reference 7 1
APOLLO System Total 52 8
Lunar Retroreflector Array 80–230 12–35
Total Error per Photon 100–240 14–37
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In−hand, tested, works

Active development

Unresolved as yet
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