APOLLO: Multiplexed Lunar Laser Ranging

pache P oint bservatory unar aser-ranging peration

Tom Murphy

Eric Adelberger Jean Dickey Bruce Gillespie John Goodkind Ken Nordtvedt Jana Strasburg Chris Stubbs Jim Williams University of Washington (& UC San Diego)

University of Washington Jet Propulsion Laboratory Apache Point Observatory UC San Diego Northwest Analysis University of Washington University of Washington Jet Propulsion Laboratory

LLR Science

Gravitational Physics:

- The *best* test available of the strong equivalence principle (EP)
- A *leading* test of the weak (composition-dependent) EP
- The **best** test of time-variation of Newton's constant, G
- Currently the *best* probe of relativistic geodetic precession

LLR Science

Gravitational Physics:

- The *best* test available of the strong equivalence principle (EP)
- A *leading* test of the weak (composition-dependent) EP
- The *best* test of time-variation of Newton's constant, G
- Currently the *best* probe of relativistic geodetic precession

Other Science:

- Lunar interior
- Coordinate systems
- Geophysics

APOLLO Goals/Expectations

- One-millimeter RMS normal point precision
- Test of the strong equivalence principle to 3×10^{-5}
- Test of the weak equivalence principle with $\Delta a/a \approx 10^{-14}$
- Measurement of \dot{G}/G to 10^{-13} yr⁻¹
- Measurement of geodetic (de Sitter) precession to $\sim 3 \times 10^{-4}$
- Similar order-of-magnitude gains in lunar science, coordinate determinations, etc.

Where Are We Now?

APOLLO's photon rate expectations

$$N_{detect} = 5.4 \text{ photons} \times \left(\frac{E}{115 \text{ mJ}}\right) \left(\frac{\eta}{0.4}\right)^2 \left(\frac{f}{0.25}\right) \left(\frac{Q}{0.30}\right) \times \left(\frac{n}{100}\right) \left(\frac{1 \text{ arcsec}}{\Phi}\right)^2 \left(\frac{10 \text{ arcsec}}{\phi}\right)^2 \left(\frac{384,402 \text{ km}}{r}\right)^4$$

- E = laser pulse energy
- $\eta =$ one-way optical throughput
- f = narrow-band filter throughput
- Q = photon detection efficiency (APD)
- n = number of 3.8 cm corner cubes in array
- Φ = atmospheric "seeing"
- ϕ = corner cube effective divergence
- r = earth-moon distance

Avalanche Photodiode Array:

Gateway to multiple photons

Lincoln Labs APD Array

Multi-photon Advantages

- Can arrange for *every* shot to be calibrated, since $\langle N_{cal} \rangle \sim 5$
- Get a range profile (albeit sparse) of the target array with each shot

Multi-photon Advantages

- Can arrange for *every* shot to be calibrated, since $\langle N_{cal} \rangle \sim 5$
- Get a range profile (albeit sparse) of the target array with each shot

Calibration Scheme

- Fast photodiode plus CFD determines laser pulse time to ± 15 ps
- Each photon is referenced to this time (green line)
- Ensemble yields mean (yellow line) and pulse shape (plus timing electronics contribution)
- Offset is constant over short term (\sim 5 min)
- Running average allows offset to vary with environmental conditions

Multiplexed Timing Scheme

- The usual event timers are not capable of multiplexing a handful of photons within a nanosecond
- The *Phillips Scientific* 7186 Time-to-Digital Converter (TDC) *is* multiplexed with 16 channels per module
- The 7186 is a CAMAC module, and has driven our design accordingly

Jitter	13 ps
Range	100 ns
Resolution	12-bit (25 ps)
Differential Linearity	25 ps across range
Thermal Stability	100 ppm per °C
Features	Sparse read, Thresholds, Pedestal

Phillips Scientific 7186 TDC Properties

Timing Diagram

- GPS-disciplined clock (*TrueTime XL-DC*) at 50 MHz serves as both frequency reference (7 ps RMS jitter over 2.5 sec) and as digital clock
- TDC measures ∆t between photon event and selected clock pulse, while digital counters keep track of coarse (20 ns) time
- Common STOP clock pulse selection is *synchronized* with clock

Block Diagram of Timing Scheme

Block Diagram of Timing Scheme

Based on counters at 50 MHz, registers, comparators, standard logic...

APOLLO Command Module

The ACM is a custom CAMAC single-width module based on a pair of *Altera* programmable logic devices, handling the digital logic associated with:

- counting clock pulses and registering significant epochs
- activating the APD gate at the appropriate time, with tunable width
- providing output enable signals for selecting individual clock START/STOP pulses for the TDC
- calibrating the TDC with START/STOP pulses $N \times 20.00$ ns apart, $\pm 10 \text{ ps}$
- firing the laser in response to the T/R switch encoder
- various safety features associated with laser fire and APD duty-cycle

13

Project Status

- Laser delivered to APO (Continuum Leopard; 532 nm, <100 ps pulsewidth, 115 mJ/pulse, 20 Hz)
- Timing/Control Electronics nearing completion of assembly/testing; ACM in production
- Optical design complete, procurement initiated
- Error budget shaping up nicely...

Project Status

- Laser delivered to APO (Continuum Leopard; 532 nm, <100 ps pulsewidth, 115 mJ/pulse, 20 Hz)
- Timing/Control Electronics nearing completion of assembly/testing; ACM in production
- Optical design complete, procurement initiated
- Error budget shaping up nicely...

Statistical Error Source	RMS Error (ps)	One-way Error (mm)
Laser Pulse (95 ps FWHM)	40	6
APD Jitter	30	4.5
TDC Jitter	15	2.2
50 MHz Freq. Reference	7	1
APOLLO System Total	52	8
Lunar Retroreflector Array	80–230	12–35
Total Error per Photon	100–240	14–37

