Mini-ASTROD: Mission Concept

NI Wei-Tou^{1, 2}, ZHU Jin¹, WU Xiang-Ping¹, CHU Guey-Bo¹, YANG Bin¹, GAO Jian^{1, 3}, GUAN Min^{1, 3}, TANG Chien-Jen², CHOU Yi², CHANG Chung-Hao², HUANG Tianyi⁴, QU Qin-Yue⁴, YI Zhao-Hua⁴, LI Guangyu⁵, TAO Jinhe⁵, WU An-Ming⁶, LUO Jun⁷, YEH Hsien-Chi⁷, ZHOU Ze-Bing⁷, XIONG Yaoheng⁸, BI Shao-Lan⁸, XU Chongming⁹, WU Xue-Jun⁹, TANG Meng-Xi¹⁰, BAO Yun¹¹, LI Fangyu¹², HUANG Cheng¹³, YANG Fu-Min¹³, YE Shu-Hua¹³, ZHANG Shu-Lian¹⁴, ZHANG Yuan-Zhong¹⁵, NIE Yuxin¹⁶, CHEN Guang¹⁷ CHRISTENSEN-DALSGAARD Joergen¹⁸, DITTUS Hansjoerg¹⁹, FUJII Yasunori²⁰, LAEMMERZAHL Claus²¹, MANGIN Jean François²², PETERS Achim²³, RUEDIGER Albrecht²⁴, SAMAIN Etienne²², SCHILLER Stephan²¹, GUO Jian²⁵, MA Zhen-Guo¹, SHIOMI Sachie², YAN Jun⁵, YAO Da-Zhi⁵, SHIOMI Sachie²

Mini-ASTROD: Mission Concept

- 1. National Astronomical Observatories, Beijing
- 2. Department of Physics, Tsing Hua University, Hsinchu
- 3. Department of Astronomy, Beijing Normal University, Beijing
- 4. Department of Astronomy, Nanjing University, Nanjing
- 5. Purple Mountain Observatory, Nanjing
- 6. System Engineering Section, National Space Program Office, Hsinchu
- 7. Department of Physics, Hua Zhong University of Science and Technology, Wuhan
- 8. Yunnan Observatory, National Astronomical Observatories, Kunming
- 9. Department of Physics, Nanjing Normal University, Nanjing
- 10. Department of Physics, Zhong Shan University, Guangzhou
- 11. Department of Mechanics, Zhong Shan University, Guangzhou
- 12. Department of Physics, Chongqing University, Chongqing

2

Mini-ASTROD: Mission Concept

- 13. Shanghai Astronomical Observatory, Shanghai
- 14. Department of Precision Instrumentation, Tsinghua University, Beijing
- 15. Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing
- 16. Institute of Physics, Chinese Academy of Sciences, Beijing
- 17. Department of Physics, Shantou University, Shantou
- 18.Aarhus University, Aarhus
- 19.ZARM, University of Bremen, Bremen
- 20.Nihon Fukushi University, Aichi
- 21.University of Duesseldorf, Duesseldorf
- 22.Observatoire de la Cote D'Azur, Glasse
- 23.Universitaet Konstanz, Konstanz
- 24.Max-Planck-Institut fuer Gravitationsphysik, Garching)
- 25. Hang-Ten Tsinghua, Beijing

2002.10.15

SPACE CONGRESS: Mini-ASTROD

3

ASTRODynamical Space Test of Relativity using Optical Devices

2002.10.15

SPACE CONGRESS: Mini-ASTROD

- Testing relativistic gravity and the fundamental laws of spacetime with more than three-order-of-magnitude improvment in sensitivity;
- Improving the sensitivity in the 5 µHz 5 mHz low frequency gravitational-wave detection by several orders of magnitude as in LISA but shifted toward lower frequencies;

• Revolutionize the astrodynamics with laser ranging in the solar system, increasing the sensitivity of solar, planetary and asteroid parameter determination by 3 orders of magnitude.

2002.10.15

SPACE CONGRESS: Mini-ASTROD

5

- Testing relativistic gravity and the fundamental laws of spacetime with three-order-of-magnitude improvment in sensitivity;
- Improving the sensitivity in the 5 µHz 5 mHz low frequency gravitational-wave detection by several times to one order of magnitude;

• Initiating the revolution of astrodynamics with laser ranging in the solar system, increasing the sensitivity of solar, planetary and asteroid parameter determination by 1-3 orders of magnitude.

6

Lunar Laser Ranging

 $\frac{1}{r^2}$

 $\overline{r^2}$

Receiving < 1 photon/pulse (<n> _{received} ~ 0.01) 10 pulses/s Round trip time ~ 2.5s

Received intensity $\propto \frac{1}{r^2} \mathbf{i} \mathbf{E} \frac{1}{r^2} = \frac{1}{r^4}$

2002.10.15

SPACE CONGRESS: Mini-ASTROD

NI

9

Two-Way Interferometric and Pulse Laser Ranging between Spacecraft and Ground Laser Station

Typical Orbit Configuration of the Mini-ASTROD Spacecraft

2002.10.15

Typical Launch Trajectory

SPACE CONGRESS: Mini-ASTROD

12

2002.10.15

Spacecraft Trajectory

2002.10.15

SPACE CONGRESS: Mini-ASTROD

Spacecraft-Venus Distance

2002.10.15

SPACE CONGRESS: Mini-ASTROD

14

Orbit Discription

- Launch via low earth transfer orbit to solar orbit with orbit period 300 days
- First encounter with Venus at 178 days after launch; orbit period changed to 225 days (Venus orbit period)
- Second encounter with Venus at 402 days after launch; orbit period changed to 178 days
- Opposition to the Sun: shortly after 400 days, 700 days and 1100 days

15

Asteroid's Perturbations

2002.10.15

SPACE CONGRESS: Mini-ASTROD

Orbit Simulation Assumptions

• (1) The uncertainty due to the imprecision of the ranging devices:

5 ps one way (Gaussian)

 (2) Unknown acceleration due to the imperfections of the spacecraft drag-free system:

 $10^{-15} \text{m/s}^2 \& \text{ change direction randomly} \\ \text{every 4 hr } (\sim 10^4 \text{s}) \\ \text{[This is equivalent to } (10^{-15} \text{m/s}^2) \times (10^4 \text{s})^{1/2} \\ = 10^{-13} \text{m/s}^2 (\text{Hz}) - \text{at } 10^{-4} \text{Hz}]$

Various Alternatives of Mini-ASTROD with OPTIS

2002.10.15

SPACE CONGRESS: Mini-ASTROD

NI

Schematic Diagram of the Mini-ASTROD Spacecraft

2002.10.15

SPACE CONGRESS: Mini-ASTROD

19

Schematic Diagram of the Mini-ASTROD Spacecraft:

- (i) Cylindrical spacecraft with diameter 2.5m, height 2m and surface covered with solar panels,
- (ii) In orbit, the cylindrical axis is perpendicular to the orbit plane with the telescope pointing toward the ground laser station. The effective area to receive sunlight is about 5m² and can generate over 500 W of power.
- (iii) The total mass of spacecraft is 300-350 kg. That of payload is 100-120 kg.
- (iv) Science data rate is 500 bps. The telemetry rate is 5 kbps for about 9 hours in two days.

2002.10.15

SPACE CONGRESS: Mini-ASTROD

20

Payload

(1) Laser systems for interferometric and pulse ranging
(i) 3 (plus 1 spare) diode-pumped Nd:YAG laser (wavelength 1.064 µm, output power 1 W) with a set of 2 perpendicular Fabry-Perot reference cavities: 2 lasers locked to 2 Fabry-Perot cavities, the other laser prestabilized by one of them and phase-locked to the incoming weak light.

(ii) 1 (plus 1 spare) pulsed Nd:YAG laser with transponding system for transponding back the incoming laser pulse from ground laser stations.

(2) Quadrant photodiode detector

(3) 380-500 mm diameter f/1 Cassegrain telescope (transmit/receive), $\lambda/10$ outgoing wavefront quality

(4) Coronagraph

- (5) Drag-free proof mass (reference mirror as one face of it):
 - $50 \times 35 \times 35$ mm³ rectangular parallelpiped;
 - Au-Pt alloy of extremely low magnetic usceptibility $(\chi < 10^{-6});$

Ti-housing at vacuum 10⁻⁶ Pa ; six-degree-offreedom capacity sensing.

- (6) Cesium clock
- (7) Optical comb

Comparison of the cesium clock frequency and the laser frequency

23

2002.10.15

Crucial Technology

100 fW weaklight phase locking
Design and development of coronagraph
Design and development of drag-free system

24

Weaklight Phase Locking

- Requirement: phase locking to 100 fW weak light
- Achieved: phase locking of 2 pW weak light with 200 μW local oscillator
- With pre-stabilization of lasers, improving on the balanced photodetection and lowering of the electronic circuit noise, the intensity goal should be readily be achieved
- This part of chanllenge should be focussed on offset phase locking, frequency-tracking and modulation-demodulation to make it mature experimental technique (also important for deep space communication

25

Coronagraph Design

2002.10.15

SPACE CONGRESS: Mini-ASTROD

NI

Coronagraph Design

- The coronagraph consisits of a narrow-band interference filter, a FADOF (Faraday Anomalous Dispersion Optical Filter) filter, and a shutter
- The narrow-band interference filter reflects most of the Sun light directly to space
- The bandwidth of the FADOF filter can be 0.6-5 GHz
- With the shutter (coronagraph), the Sun light should be less than 1 % of the laser light at the photodetector

2002.10.15

Drag-free System R & D

- Consists of a high-precision accelerometer/inertial sensor to detect non-drag-free motions and micro-thruster system to do the feedback to keep the spacecraft drag-free
- Looking for collaboration with ONERA and Trento to learn the R & D they have for LISA/SMART 2
- Collaboration with ZARM, Bremen University for feedback control and propulsion system

Current design of the LTP

Università degli Ntudi

SMART-2 Launch 8-2006

Launcher and Mission Lifetime

• Launcher: Long March IV B (CZ-4B)

• Mission Lifetime:

3 years (nominal)8 years (extended)

2002.10.15

SPACE CONGRESS: Mini-ASTROD

NI

PHASE A STUDY

• Topical reports: due November, 2002

Preliminary version: due January, 2003

• Presentation: March, 2003

2002.10.15

SPACE CONGRESS: Mini-ASTROD

NI

OUTLOOK Mini-ASTROD

- Testing relativistic gravity and the fundamental laws of spacetime with three-order-of-magnitude improvement in sensitivity; gamma to 10^{-7} or better, beta to 10^{-7} , J₂ to 10^{-8} , asteroid masses to 10^{-3} fraction
- Improving the sensitivity in the 5 µHz 5 mHz low frequency gravitational-wave detection by several times to one order of magnitude;
- Initiating the revolution of astrodynamics with laser ranging in the solar system, increasing the sensitivity of solar, planetary and asteroid parameter determination by 1-3 orders of magnitude.

35

Optimistic date of launch: November, 2002
 SPACE CONGRESS: Mini-ASTROD NI