Improvements in the Automation of the Zimmerwald SLR Station

Werner Gurtner
 Eugen Pop
 Johannes Utzinger

Astronomical Institute University of Bern

$13^{\text {th }}$ International Workshop on Laser Ranging
October 17-11, 2002
Washington D.C.

Contents

- Introduction
- Prediction Processing
- Sky Condition, Adverse Weather Detection
- Remote Control
- Automated Control
- Automated Session Planning
- Realtime Noise Filtering and Tracking Improvement
- Aircraft Detection
- Security and Safety Issues
- Automated Data Postprocessing and Submission
- Conclusions

Introduction

- Remote control and/or automation mainly used in Zimmerwald for session extension
- Two sessions plus extensions cover 24 hours
- Paper discusses most topics addressed in the session announcement

Prediction Processing

- Predictions received by E-mail, extracted and processed automatically
- Maintenance of satellite-dependent IRV files
- Generation of pass lists
\bullet Computation of az/el/range fíles per pass
- Replacement of IRVs by post-manoeuvre values at manoeuvre time, re-computation of pass lists and ephemeris files if necessary
- Application of additional time bias corrections from time bias server at start of pass

Sky Condition, Adverse Weather Detection

\checkmark Two external, roof-mounted color video cameras connected to web server
\Rightarrow Remote inspection of weather conditions

- Color video camera on and b/w intensified camera in telescope connected to web server
\Rightarrow Detailed weather condition in pointing direction
\rightarrow Rain sensor
\Rightarrow Rain warning, closes dome automatically
- No cloud detector!

Remote Visual Instrument Control (day)

Remote Visual Tracking Control (day)

Remote Visual Tracking Control (night)

Remote Control, User Interfaces

\bullet VT-200 and X-11 graphics windows

- On any remote system by Internet with VT terminal and X-11 emulation
- Main interaction
- Realtime system and tracking status display
- Noise/return display
- Sky plot of passes, sun and telescope positions
\diamond Internet browser for camera image displays

Realtime display of system parameters

EUROLAS Status Display

Graz	2002-08-13	14:17:32	Glonass87	LST	0	HON22 4	0.000	
Potsdam	2002-08-13	14:18:01		OUT				
Zimmerwald	2002-08-13	14:18:48	Glonass87	CUR	0	COD 791	0.000	(remote)
Wettzell	2002-08-13	14:18:41		OUT	(Trac	ing Id		
Grasse_slr	2002-08-13	14:06:10	Lageos2	LST	653	NER022	0.002	
Herstmonceux	2002-08-13	14:18:26		OUT				
Ajaccio_ftlr	2002-08-13	13:59:00		OUT				

Sky Plot; Sun and Telescope Positions

Telsecepa, 5ur, 5atellite Tracke

Automated Control

- Temporarily automated operation
- Start in manual mode
- Manual adjustment of system parameters
- Switch to fully automated mode
- Interaction still possible
- Fully automated operation

```
AUTO_SLR 'power_up' 'start' 'stop' 'oper_name'
AUTO_SLR 10:30 10:50 12:15 WG
```

- Uses pre-defined system parameters, automatically generated tracking scenario, etc

Automated Session Planning

- Check all possible or selected passes for sun interference, maximum elevation
- Split passes into parts of minimum length, distribute them according to priorities
- Propose tracking scenario to operator (manual mode) or directly use it (auto mode)
- Manual overwriting is easily possible

Automated Session Planning: Example

```
--------------|--------------------------------------------------------------------------
    # Satellite 12:18:39

```

01 GLONASS-87\#\#\#\#\#\#\#\#\#\#\#\#+++
02 GRACE-A -------------\#\#++\#\#
03 GRACE-B
++\#\#++
04 LAGEOS-2
\#\#\#\#+++\#\#\#\#+++++++\#
05 GFO-1
-----------------------\#\#\#+---\#\#\#\#\#\#+
1 char = 30 seconds

```

\section*{Realtime Noise Filtering and Tracking Improvement (1)}
- Initialization Phase
- Set relatively large range gate window depending on expected prediction accuracy and daylight
\(\bullet\) Compare all recent range residuals (50)
- Compare all recent time biases (all range residuals are converted into along-track errors)
- Search in a spiral around predicted position
- Agreement between a minimum number of values (day: 6, night 4) ends initialization phase
\(\Rightarrow\) Current time bias

\section*{Realtime Noise Filtering and Tracking Improvement (2)}
- After initialization
- Set range gate window to minimum ( 40 ns )
\(\bullet\) Improve predicted ranges with current time bias
\(\bullet\) Identify true returns from noise using improved prediction (threshold \(\sim 1 \mathrm{~ns}\) )
- Adjust current time bias with confirmed range
- Keep return rate below 30 percent (adjust transmitted energy)
- Search around current position for stronger returns

\section*{Aircraft Detection}
- Station computer
- gets near-realtime positions of airplanes in an area around the stations from the Air Traffic Control
- continually extrapolates positions to current time
- compares positions with pointing direction of telescope
- closes Laser shutter in case of conflicts
- Small radar
- in parallel with telescope
- detects small, low and near aircraft
- closes Laser shutter in case of conflicts

\section*{Security and Safety Issues}
- Sun protection
- Station computer excludes portions of passes \(\left(25^{\circ}\right)\)
- Telescope PC avoids sun during positioning ( \(20^{\circ}\) )
- Sun detector closes sun protection \(\left(<20^{\circ}\right)\)
- Rain detector
- Closes open dome, stops tracking
- Laser hazard
- Motion detector in dome interrupts laser firing
- General
- Flash lamp in control room

\section*{Automated Data Postprocessing and} Submission
- Currently done under operator control
\(\bullet\) Run programs for each selected pass to
- apply averaged calibration constant
- screen data (iteratively compute best-fitting orbit)
- generate normal points
- generate exchange format file
- Daytime passes are inspected visually
- System proposes passes to accept depending on post-fit RMS
- No other interaction necessary

\section*{Experiences: Remote Control}
- Nearly as successful as onsite observations
- Limitations
- Some Laser adjustments can only be done on site
- Some rare crashes need operator intervention (instrument run into limit switches)
- Psychological element
- Used
- in case of surprising weather changes
- to bridge gaps between assigned sessions

\section*{Experiences: Automated Operation}
- At night time very good performance
- During the day more difficult with weak returns (to keep instrument on track)
- Same limitations as with remote control
- Additionally:
- Cloud coverage not known to the system
- Tracking scenario not adjusted to actual conditions
- Unpredicted weather changes
- Used to cover breaks (lunch, naps, ...) and bridge gaps between sessions```

