Improvements in the Automation of the Zimmerwald SLR Station

> Werner Gurtner Eugen Pop Johannes Utzinger

Astronomical Institute University of Bern

13th International Workshop on Laser Ranging October 17-11, 2002 Washington D.C.

Contents

- Introduction
- Prediction Processing
- Sky Condition, Adverse Weather Detection
- Remote Control
- Automated Control
- Automated Session Planning
- Realtime Noise Filtering and Tracking Improvement
- Aircraft Detection
- Security and Safety Issues
- Automated Data Postprocessing and Submission
- Conclusions

Introduction

- Remote control and/or automation mainly used in Zimmerwald for session extension
- Two sessions plus extensions cover 24 hours
- Paper discusses most topics addressed in the session announcement

Prediction Processing

- Predictions received by E-mail, extracted and processed automatically
 - ♦ Maintenance of satellite-dependent IRV files
 - ♦ Generation of pass lists
 - Computation of az/el/range files per pass
 - Replacement of IRVs by post-manoeuvre values at manoeuvre time, re-computation of pass lists and ephemeris files if necessary
 - Application of additional time bias corrections from time bias server at start of pass

Sky Condition, Adverse Weather Detection

 Two external, roof-mounted color video cameras connected to web server Remote inspection of weather conditions Color video camera on and b/w intensified camera in telescope connected to web server → Detailed weather condition in pointing direction Rain sensor → Rain warning, closes dome automatically No cloud detector!

Remote Visual Instrument Control (day)

Remote Visual Tracking Control (day)

Remote Visual Tracking Control (night)

Remote Control, User Interfaces

VT-200 and X-11 graphics windows

- On any remote system by Internet with VT terminal and X-11 emulation
- ♦ Main interaction
- ◆ Realtime system and tracking status display
- Noise/return display
- ◆ Sky plot of passes, sun and telescope positions

Internet browser for camera image displays

Realtime display of system parameters

+-							
 	Satellite :	LAGEOS-2				Visibility :	SUN 43
ļ	Initialize :	Maximum	<pre># of Shots :</pre>	40	Actua	1 # of Shots :	36
1	OK	Necessary	# of Hits :	6	# oi	Init Cycles :	12
i.	Manual Corr.:	Step: 4"	Up/Dn Lf/Rg:	0/ 3	2 Total	: 0/ 2 E/A:	0/ -8
I I	Search :	Step: 4"	Along/cross:	0/	0 Total	: 0/ 0	7 "
L	Obs.Interval:	0.1 s	ADC 1/2:	524	1 15.6	mJ RT-Filter:	0 ns
L	Window :	40 ns	Rgtcorr:	(0 ns	Previous :	44 ns
L	Diverg/Blue :	300 1875	OLate by:	-0.00	4 s		l. I
L							l. I
L	Calibration :	Each 70.	obs ADC 1/2:	728 42	2 0.2	mJ Obs.Value:	53.97 ns
L							l. I
I	Statistics :	Calibr:	191 21% Bad:	607	0% Ovf 1	: 3449 Hits:	1243 12%
I							l I
I	Auto: ON	Mode: M	Obs.: ON		ATC	C: OK RNG	0100000000
I							0111100001
I	A 184.6987 E	31.3302 D	180 MAN	CORR	13-	AUG-02 16:10:1	9.8 6:41
+•		+			+		+
1	DAI_TV		TILT_ENA	142 (DETECTORS	
1			ND_FILTER	143 (I
т.					+		

EUROLAS Status Display

Graz	2002-08-13	14:17:32	Glonass87	LST	0	HON224	0.000	
Potsdam	2002-08-13	14:18:01		OUT				
Zimmerwald	2002-08-13	14:18:48	Glonass87	CUR	0	COD791	0.000	(remote)
Wettzell	2002-08-13	14:18:41		OUT	(Trac	king Idl	e)	
Grasse_slr	2002-08-13	14:06:10	Lageos2	LST	653	NER022	0.002	
Herstmonceux	2002-08-13	14:18:26		OUT				
Ajaccio_ftlr	2002-08-13	13:59:00		OUT				

Sky Plot; Sun and Telescope Positions

Automated Control

Temporarily automated operation ◆ Start in manual mode Manual adjustment of system parameters • Switch to fully automated mode ◆ Interaction still possible Fully automated operation AUTO SLR 'power up' 'start' 'stop' 'oper name' AUTO SLR 10:30 10:50 12:15 WG ◆ Uses pre-defined system parameters, automatically generated tracking scenario, etc

Automated Session Planning

- Check all possible or selected passes for sun interference, maximum elevation
- Split passes into parts of minimum length, distribute them according to priorities
- Propose tracking scenario to operator (manual mode) or directly use it (auto mode)
- Manual overwriting is easily possible

Automated Session Planning: Example

#	Satellite :	L2:18:39 12:48:04
01	GLONASS-87	╷ ╪╫╫╫╫╫╫╫╫╫╫╫┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼
02	GRACE-A	##++##
03	GRACE-B	++##++
04	LAGEOS-2	
05	GFO-1	####+####+############
		1 char = 30 seconds

Realtime Noise Filtering and Tracking Improvement (1)

Initialization Phase

- Set relatively large range gate window depending on expected prediction accuracy and daylight
- ◆ Compare all recent range residuals (50)
- Compare all recent time biases (all range residuals are converted into along-track errors)
- ◆ Search in a spiral around predicted position
- Agreement between a minimum number of values (day: 6, night 4) ends initialization phase

Current time bias

Realtime Noise Filtering and Tracking Improvement (2)

After initialization

- ◆ Set range gate window to minimum (40 ns)
- ◆ Improve predicted ranges with current time bias
- ◆ Identify true returns from noise using improved prediction (threshold ~ 1 ns)
- ◆ Adjust current time bias with confirmed range
- Keep return rate below 30 percent (adjust transmitted energy)
- Search around current position for stronger returns

Aircraft Detection

Station computer

- gets near-realtime positions of airplanes in an area around the stations from the Air Traffic Control
- continually extrapolates positions to current time
- compares positions with pointing direction of telescope
- closes Laser shutter in case of conflicts

Small radar

- ♦ in parallel with telescope
- ◆ detects small, low and near aircraft
- closes Laser shutter in case of conflicts

Security and Safety Issues

Sun protection

- ◆ Station computer excludes portions of passes (25°)
- ◆ Telescope PC avoids sun during positioning (20°)
- ◆ Sun detector closes sun protection(< 20°)

Rain detector

Closes open dome, stops tracking

Laser hazard

Motion detector in dome interrupts laser firing

General

◆ Flash lamp in control room

Automated Data Postprocessing and Submission

Currently done under operator control

◆ Run programs for each selected pass to

- apply averaged calibration constant
- screen data (iteratively compute best-fitting orbit)
- generate normal points
- generate exchange format file
- ◆ Daytime passes are inspected visually
- System proposes passes to accept depending on post-fit RMS
- No other interaction necessary

Experiences: Remote Control

- Nearly as successful as onsite observations
 Limitations
 - ◆ Some Laser adjustments can only be done on site
 - Some rare crashes need operator intervention (instrument run into limit switches)
 - Psychological element
- ♦ Used
 - in case of surprising weather changes
 - ♦ to bridge gaps between assigned sessions

Experiences: Automated Operation

- At night time very good performance
- During the day more difficult with weak returns (to keep instrument on track)
- Same limitations as with remote control
- Additionally:
 - ♦ Cloud coverage not known to the system
 - Tracking scenario not adjusted to actual conditions
 - Unpredicted weather changes
- Used to cover breaks (lunch, naps, ...) and bridge gaps between sessions