Modification of Laser Ranging Equation

Xiong Yaoheng Feng Hesheng Yunnan Observatory, Chinese Academy of Sciences

The 13th International Laser Ranging Workshop, Washington D.C., U.S.A Oct. 10, 2002 1. Classical Laser Ranging Equation Returned photoelectron numbers *N* for one laser pulse transmission

$$N = \frac{16EN_0A_mA_rT_a^2T_tT_r\eta\alpha}{\pi^2R^4\theta_e^2\theta_m^2}$$

Considered:

- T_a atmospheric transmission, 0.5, amplitude attenuate Unconsidered:
- 1. Atmospheric turbulence effects on laser beam propagation.
- 2. The distribution of the laser beam

For Kunning station 1.2m laser ranging system on LLR: N=0.17 sub-single photon detection.

2. Atmospheric Turbulence Effects on Laser Beam Propagation

Random time delay, pulse spread, (<1 ps), negligible</p>
Scintillation, variance of intensity fluctuation ≤ 0.02, now may be negligible
Beam wander and beam spread, focusing on the

Beam wander and beam spread, focusing on the short-term beam wander

Short-term beam wander:

$$\langle \rho_C^2 \rangle = \frac{10.22Z^2}{k^2 r_0^{\frac{5}{3}} D^{\frac{1}{3}}}$$

Short-term beam spread:

$$\left\langle \rho_{S}^{2} \right\rangle = \frac{4Z^{2}}{k^{2}D^{2}} + \frac{D^{2}}{4} \left(1 - \frac{Z}{F}\right)^{2} + \frac{17.6Z^{2}}{k^{2}r_{0}^{2}} \left[1 - 0.48 \left(\frac{r_{0}}{D}\right)^{\frac{1}{3}}\right]^{\frac{6}{5}}$$

Long-term beam spreading:

$$\langle \rho_L^2 \rangle = \frac{4Z^2}{k^2 D^2} + \frac{D^2}{4} \left(1 - \frac{Z}{F}\right)^2 + \frac{17.6Z^2}{k^2 r_0^2}$$

• Here,

k wave number, D laser transmitter diameter

- Z laser propagation axis and coordinate
- F radius of curvature of laser beam
- r_o Fried's coherence length, 5 ~ 20 cm
- Method:

Maxwell wave equation \rightarrow *Markov* approximation \rightarrow the second moment and the four moment (approximation) of the field \rightarrow mean square value of above terms

Changing ρ_C , ρ_{S_1} and ρ_L to their correspond angle θ_C , θ_S , and θ_L

Angle deviation of laser beam at different r_o

	$r_o = 5 \mathrm{cm}$	$r_o = 10 \text{cm}$	$r_o = 15 \mathrm{cm}$
$ heta_L$	2."93	1.″48	0.″98
$ heta_{S}$	2."63	1.″27	0.″83
θ_{C}	1."32	0.″74	0."53

3. Atmospheric Turbulence Effects on Laser Ranging

3.1 Laser ranging accuracy Consideration a random path deviation caused by the refractive index fluctuation for a round trip laser ranging, the accuracy of the laser ranging ΔL is:

$$\left<\Delta L^2\right> = \frac{3.127C_n^2(0)L_0^{\frac{5}{3}}h_T}{SinE}$$

Here: C_n^2 turbulence structure parameter L_o turbulence outer scale, 100m E target elevation angle h_T atmospheric scale height, 11km

Laser ranging accuracy at different turbulence

$\Delta L(mm)$	$E = 10^{0}$	$E=30^{0}$	$E = 60^{0}$
$C_n^2 \sim 10^{-13} m^{-2/3}$	10.33	6.09	4.63
$C_n^2 \sim 10^{-15} m^{-2/3}$	0.83	0.45	0.37
$C_n^2 \sim 10^{-17} m^{-2/3}$	0.17	0.10	0.08

3.2 Returned laser photons

Need to be considered:

- 1. Short-term laser beam wander caused by the atmospheric turbulence
- 2. Gaussian distribution of the laser beam along radial:

$$E(\rho) = \frac{E_0}{\pi \rho_e^2} \exp\left(-\frac{\rho^2}{\rho_e^2}\right)$$

Calculation returned laser photons

Returned laser photoelectrons N_r on the ground receiver for one laser pulse firing:

$$N_r = \frac{4EN_0A_mA_rT_a^2T_tT_r\eta\alpha}{\pi^2(\theta_e^2 + \theta_s^2)\theta_m^2R^4} \exp\left(-\frac{\rho_c^2}{\rho_e^2 + \rho_s^2}\right)$$

New form of Laser Ranging Equation not unique, depend on how many turbulence terms to be concerned

here: ρ_e laser beam radius at target, determined by laser divergence ρ_c short-term beam wander ρ_s short-term beam spread • If tilt is removed, the correction factor for the laser ranging is:

$$\frac{N_r}{N} = \frac{\theta_e^2}{4(\theta_e^2 + \theta_s^2)} \exp\left(-\frac{\theta_c^2}{\theta_e^2 + \theta_s^2}\right)$$

 1/40 ~ 1/6, depend on the turbulence
 For Kunming station 1.2m laser ranging system: N_r=0.17×(1/40 ~ 1/6)
 More less than one photoelectrons!

4. Further Thoughts

- Real-time tip-tilt compensation for the laser beam wander on the LLR, low-order compensation
- Atmospheric tilt comes from the moon surface, the extended light source, using absolute differences algorithm to calculation the tilt.
- For all-order compensation, more complicated techniques are needed.

Optical Scheme of Kunming 1.2m LR System for Tilt Correction

Thanks