Atmospheric Contribution to the Laser Rangign Jitter

Ivan Prochazka, Lukas Kral

13th International Workshop on Laser Ranging, Washington D.C. October 7-11,2002

Czech Technical University in Prague Prague, Czech Republic

Satellite

Goals:

 Evaluate the contribution of the atmosphere fluctuations to the overall SLR jitter budget

Create model of propagation of a picosecond laser pulse through atmosphere, consider turbulence, dispersion and diffraction

Motivation

The observed discrepancy in laser ranging jitter for different atmosphere path length

EXPERIMENTs

streak camera TW (Prague 1988)
0.8 ps (indoor) --> 1.2 ps (outdoor)
=> 0.9 ps contribution of 106 m path

ground taget ranging (Graz, 2000)
 7 ps (1 m) --> 11 ps (6 km)
 => 8.5 ps contribution of 6 km path

high precision SLR (Graz, MLRO, 2002)
 7 ps (calib) --> 18 ps (low sat.)

Two wavelength streak camera ranging

Indoor path ~ 1m TW delay jitter 0.8 ps / shot

Outdoor path ~ 106m TW delay jitter 1.2 ps / shot

=> contribution of 106 m 0.9 ps

Hamal, Prochazka, Schelev et al, Prague, 1988

Initial Modelling Conditions

- 35 ps pulse at 532 nm has effective spectral width < 0.1 nm</p>
- Characteristic time of atmospheric turbulence changes is > 1 ms
- = > all wavelengths in the pulse "see" the same state of atmosphere
 = > chromatic dispersion (pulse spectrum) does not contribute

Modelling Methods

GLAD code

- Beam is represented by complex arrays describing transversal field distribution
- the atmospheric propagation routines

available

- Pure geometrical path solution
- seeing angles, atmospheric path length
 => path difference estimate

Propagation Model Scheme

Alternating steps of aberration and diffraction

Modelled Wavefronts

Results 1 – Slant Path to Space

Path ground to space (300 km), zenith angle = 45° , $\lambda = 500$ nm, plane wave

Results 2 – Horizontal Propagation

• 6 km long horizontal path, λ = 500 nm, plane wave

Results 3 – Gaussian Beam Direction Fluctuations

a) Slant path to space, h=300 km, zenith angle 45°, λ = 500nm

b) Horizontal path 6 km, λ = 500nm

Ri	[cm]	σ off	[1	n]
	0,5)	8.	,20
	2,5)	4.	, 1 9
	5,0) (0	.30

Satellite

Laser station

Conclusion

- Wavefront variance caused by atmospheric turbulence is < +/- 5 um under normal observing conditions
- both models (Glad, geometry) give the same answer
- The observed laser ranging jitter increase is caused by other effect(s)

Thanks for your attention

