Millimeter Ranging Accuracy the Bottleneck

Ivan Prochazka, Karel Hamal

13th International Workshop on Laser Ranging, Washington D.C. October 7-11,2002

Czech Technical University in Prague Prague, Czech Republic

Accuracy

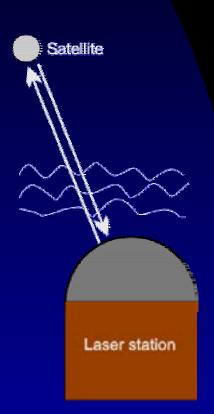
 A measure of the closeness of a measurement /average/ to the true value.

Satellite

Laser station

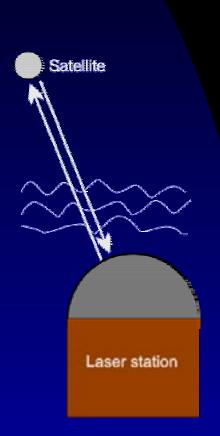
- Includes a combination of random error (precision) and systematic error (bias) components.
 - It is recommended to use the terms "precision" and "bias", rather than "accuracy," to convey the information usually associated with accuracy.
- *definition according to* USC Information Sciences Institute, Marina del Rey, CA (www)

Accuracy check

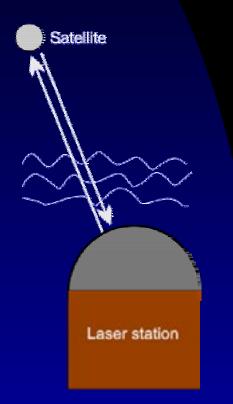

Comparison to more accurate method

For SLR accuracy check such a method is not available

characterizing ALL individual error budget contributors, their precision and biases (M. Pearlman, System characterization parameters, Herstmonceux, 1984)

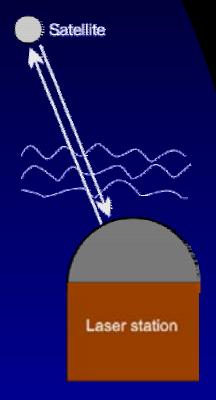

PROBLEM : The list of our error budget contributors is not complete.

I.Prochazka, K.Hamal, Washington DC, 2002



SLR precision discrepancy

Goals:


 Identification of ALL the error budget contributors

 Determining the precision and possible biases of all these components

"New" SLR error budget contributors

Laser wavefront

- Most systems calibrate using a near field "sample" of the beam, however, SLR is based on a far field wavefront

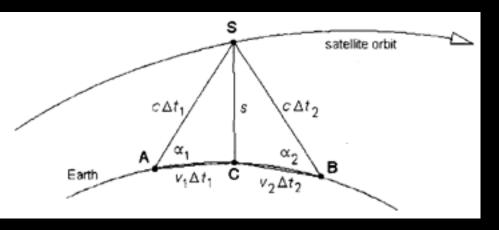
Reference frequency

- RF and harmonic distorsion of the master frequency signal bias the timing

Data processing

- the "numerical noise" of SLR data processing

SLR geometry


- the satellite range is not one half of the pulse travel back and forth

Timing devices linearity and biases

(many ?) Others

SLR geometry

 J.Kabelac, "Determination of reflection time", Vermessung und Geoinformation, No.4,97Wien, Austria,1997,pp288-289

Consequences

- 1. The <u>reflection time</u> is not equal to the emission time plus 1/2 of propagation time.
- 2. The <u>satellite distance</u> is not equal to 1/2 of the beam path length.
- 3. The range discrepancy may reach 0.5 mm (!)