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Introduction. The appendix to this paper contains diagrams and discussions of the basic
optics of a two dimensional retroreflector for the various cases analyzed in this paper. This
is included to provide an understanding of the physical processes described by the
equations. The length of the cube corner from face to vertex is L. The width of the front face
is l = 2L. The direction of the reflected beam can be calculated by computing the difference
in optical path length for rays traveling parallel and anti-parallel to the direction of motion of
the retroreflector.

1.  Solid cube corner.

Let us consider a solid two-dimensional cube corner moving to the left with velocity v. The
width of the front face is l and the index of refraction is n. The geometry is the same as that
of figure 4 in the appendix for a hollow retroreflector. The time for a ray to travel from the
right side of the cube to the left at velocity U1 is T1. The time for a ray to travel from the left
side to the right at velocity U2  is T2 .

The relativistic velocities U1 and U2  are given by the equations
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where c is the velocity of light in vacuum. The distance traveled by the ray moving to the left
is equal to the width l of the cube plus the distance moved by the cube in time T1 at velocity
v. The distance traveled by the ray moving to the right is equal to the width l of the cube
minus the distance moved by the cube in time T2  at velocity v. We have the two equations
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Solving equation (1.3) for T1 gives
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Solving equation (1.4) for T2  gives
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If T1 is greater than T2  the ray traveling to the right will arrive first. It will be retroreflected
and exit the cube corner ahead of the ray traveling to the left. As shown in figure 4 of the
appendix, it will travel a distance ′ = −( )B C c T T1 2  before the ray traveling right exits the
cube corner. The effect of this is to tilt the reflected wavefront to the left which we can
define as a positive deflection angle. The velocity aberration angle α is given by dividing
′B C  by l = 2L. This gives
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Substituting equations (1.5) and (1.6) into equation (1.7) gives
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Canceling the factors of l gives
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Evaluating the first denominator in equation (1.8) we have
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Evaluating the second denominator in equation (1.9) we have
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Substituting equations (1.9) and (1.10) into equation (1.8) gives
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The final result is
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The second order term in the denominator of equation (1.11) may be the result of the
approximation used to define α  in equation (1.7). The geometry is shown in Figure 4 of
the appendix.

2.  Hollow cube corner.

Since the index of refraction cancels in equation (1.11) the velocity aberration for a hollow
cube corner should be exactly the same as for a solid cube corner. The equations have the
same form up to equation (1.8). Since n = 1, the relativistic velocities in equations (1.1) and
(1.2) reduce to
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Substituting equation (2.1) into equation (1.8) gives
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Combining the fractions we have
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which is the same expression obtained for a solid cube corner.



3.  Stationary cube corner with moving fluid.

This is essentially the Fizeau experiment where mirrors are used to pass light through a pipe
of length l containing water of index of refraction n moving at velocity v from right to left.
The geometry is shown in figure 5 of the appendix. This analysis is a modified version of a
calculation done by T.P Startsev (private communication). In place of equations (1.5) and
(1.6) we have
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Substituting (3.1) and (3.2) into equation (1.7) gives
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Substituting equations (1.1) and (1.2) into the expression in parenthesis in equation (3.3)
we have
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Neglecting the second term in the denominator and multiplying the terms in the numerator
we have
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The final result is
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Substituting equation (3.4) into equation (3.3) gives
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This expression is negative. As anticipated in figure 5, the return beam is deflected to the
right which is in the opposite direction from the direction of motion of the fluid.

4.  Moving cube corner with stationary fluid.

This case may not be very realistic physically but it is presented as a gedanken experiment
to show the contributions to the total velocity aberration. The relativistic velocities are
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If we substitute equation (4.1) into equation (1.8), we have
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Neglecting the second order term in the denominator we have
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Suppose one did not know about the Fizeau effect or the equation for the addition of
velocities from special relativity. Equation (4.2) is the result that would be obtained by
assuming that the velocity of light in a moving fluid is given by equation (4.1) instead of
equations (1.1) and (1.2). This result is greater than the usual expression 2v/c. Equation
(4.2) could be rewritten as
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The second term is equal and opposite to equation (3.5) derived in section 3.

5. Moving fluid and moving cube corner.



For a cube corner in orbit, both the mirrors and the dielectric are moving together at velocity
v. Equation (4.3) is equal and opposite to equation (3.5). If we add equations (3.5) derived
with only the fluid moving and (4.3) derived with only the mirrors moving, the index of
refraction cancels leaving

α = 2
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Appendix

Basic Retroreflector Optics

Section A below shows the motion of a light wave through a two-dimensional hollow
retroreflector both as a ray and as a wave. Section B considers the case of a moving hollow
retroreflector. Section C discusses the effect of a moving fluid in a stationary hollow
retroreflector. Section D discussed the case of a hollow retroreflector moving through a
stationary fluid.

A.  Stationary Hollow Retroreflector

     Figure 1a. Ray entering the left half. Figure 1b. Ray entering the right half.

Figure 1 shows a hollow two-dimensional  retroreflector. The angle between the faces is 90
degrees. In figure 1a a ray traveling up enters the left half of the retroreflector, strikes the
left face at a 45 degree angle, is reflected through a 90 degree angle, and ends up traveling to



the right. It strikes the right face, is reflected by 90 degrees, and ends up traveling down out
of the retroreflector. Figure 1b shows a ray entering the right half and being retroreflected in
a similar manner.

A two-dimensional retroreflector has two sectors corresponding to the two possible orders
of reflection. In a three dimensional retroreflector there are 6 sectors corresponding to the 6
possible orders of reflection from the three back faces.

     Figure 2a. Wave entering left half Figure 2b. Wave entering right half

Figure 2 shows the details of what happens to the waves incident on the two sectors. In
Figure 2a, the wave enters the left half traveling up as shown by the arrow on wavefront
number 1. After traveling halfway into the retroreflector section 2 has been reflected from
the left face and is traveling to the right. Section 3 is still traveling up. When the wave
reaches the vertex is has been completely reflected from the left face and is traveling to the
right. Halfway back out of the retroreflector section 5 has been reflected from the right face
and is traveling down. Section 6 is still traveling to the right. Section 7 shows the wave
exiting the retroreflector traveling down.

Figure 2b shows the wave entering the right half and exiting the left half. Both the
wavefronts have been reversed left to right in the process of being retroreflected.

     Figure 3a. Ray tracing for left sector.           Figure 3b. Ray tracing for right sector.

Figure 3 shows a ray tracing for the two sectors. In Figure 3a the ray entering at point A
travels to the right and exits at point B. The ray entering at point E travels to the vertex at
point D and then back to point E. In Figure 3b, the ray entering at point B travels to the left
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and exits at point A. The ray entering at point E travels to the vertex at point D and then back
to point E. The ray entering the center at point E is common to both sectors.

The ray entering at point A travels a distance 2L to point B. The ray entering at point E
travels a distance 2L in going to point D and back to E. The ray entering at point B travels a
distance 2L to point A. Since the path length is the same for all rays, the exiting wave has a
flat phase front and is traveling back along the same direction that it entered.

B. Moving hollow retroreflector.

Figure 4. Moving retroreflector

Figure 4 shows a two dimensional retroreflector moving at velocity v  to the left. In this
section we will consider the retroreflector to be hollow. The vertex is at point D as the wave
enters the retroreflector. The wave reaches the vertex at point ′′D . As it  leaves the
retroreflector the vertex is at point ′D . The length from the front face to the vertex is L.

The time required to move the distance L from the front face to the vertex at velocity c  is
L/c. In that time the retroreflector moves a distance v(L/c). By the time the ray has returned
to the front face, the retroreflector has moved a total distance

AA′ = 2Lv/c.

Because of the motion of the retroreflector, the ray traveling to the right exits the cube
corner before the ray traveling to the vertex. The ray traveling to the left exits the cube
corner after the ray traveling to the vertex. The effect of the motion of the cube corner is to
tilt the direction of the reflected wave by the angle α.

The angle α can be calculated approximately as follows. The optical path length for the ray
traveling to the left is

2L + 2Lv/c

The optical path length for the ray traveling to the right is
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the difference in optical path length is

4Lv/c

Dividing the difference in optical path length by 2L which is the width of the front face
gives

α = 2v/c

C. Stationary  hollow retroreflector with moving fluid

Figure 5. Stationary hollow retroreflector with fluid moving from right to left

Figure 5 shows a stationary two dimensional retroreflector with a fluid of index of
refraction n flowing from right to left between the mirrors at velocity v. The velocity of light
in a stationary fluid is c/n. As a result of the Fizeau effect, a moving fluid “drags” the light
with a fraction of its own velocity. The velocity of the ray which enters at B and travels to
the left is slightly greater than c/n. The velocity of the ray which enters at A and travels to
the right is slightly less than c/n because it is traveling “against the current”. The ray
traveling to the left arrives first and travels to C by the time the ray traveling to the right
reaches B. The result is that the reflected wave is deflected to the right. This is in the
opposite direction from the velocity of the fluid which flows from right to left. The angle of
deflection has been derived in section 3 and is given by equation (3.5)

D. Moving retroreflector with stationary fluid.

The velocity aberration for this case can be calculated approximately using figure 4. The
time required to move the distance L from the front face to the vertex at velocity (c/n)  is
L/(c/n) = nL/c. In that time the retroreflector moves a distance v(nL/c). By the time the ray
has returned to the front face, the retroreflector has moved a total distance

AA′ = 2nLv/c.

The optical path length for the ray traveling to the left is
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The optical path length for the ray traveling to the right is
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the difference in optical path length is
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Dividing the difference in optical path length by 2L which is the width of the front face
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This is the same as equation (4.2) derived in a more rigorous manner in section 4.


