The New SLR Station of GFZ Potsdam : A Status Report

R.Neubert, L.Grunwaldt, H.Fischer, GeoForschungsZentrum Potsdam (GFZ), Division 1, Germany Tel.: +49-331-2881153 Fax: +49-331-288-1111 e-mail: neub@gfz-potsdam.de

Background

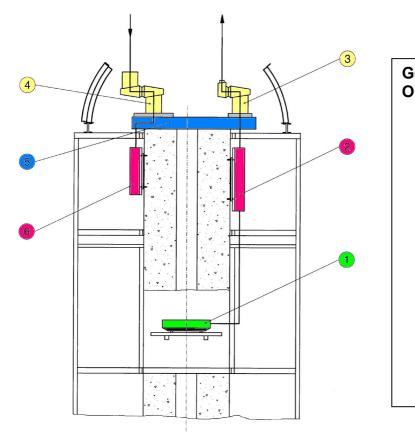
The planned relocation of the Potsdam SLR station to the new dome opened the opportunity of upgrading with special emphasis to the optical- mechanical subsystem. For several reasons the time for design and construction was much longer than expected. To avoid any gap during the CHAMP mission, it has been decided to keep the present station operational during the engineering phase of the new system and to conduct a few months parallel ranging.

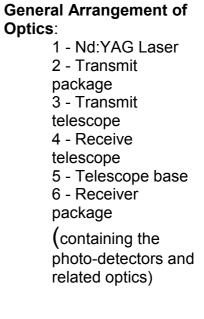
Fig.1: The Twin Telescope on Top of the New Tower. Status: Oct. 2000

Description of the System

Two separate telescopes for transmitting and receiving are used. The design of this telescope system has been described in some detail already [1]. The configuration avoids the necessity of a transmit- receive switch and minimises the reception of atmospheric back-scattering. Furthermore both telescopes are encapsulated by separately driven housings. The laser is an upgraded version of the system described in [2]. It is based on a diode-laser pumped Nd-YAG oscillator with two modelockers (66.7MHz and 1333MHz resp.). Two external pockels cells enable the selection of any number of pulses from the mode locked train. The selected pulses are amplified by two flash lamp pumped laser rods.

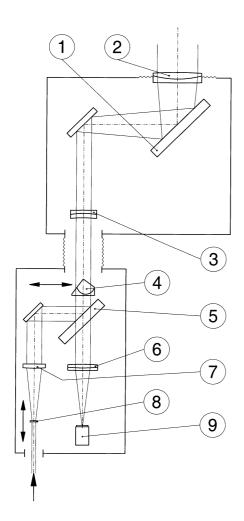
The electronical subsystem is similar to the operating station and uses standard components as far as available. The measurement cycle is controlled by a single PC communicating via serial

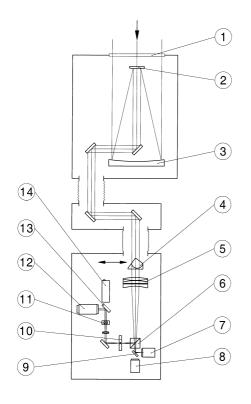

as well as GPIB interfaces. The telescopes have their own controllers and are connected to the PC by serial ports. The not time critical tasks (laser control, beam divergency, receiver FoV etc.) are controlled by a separate PC.


Specifications

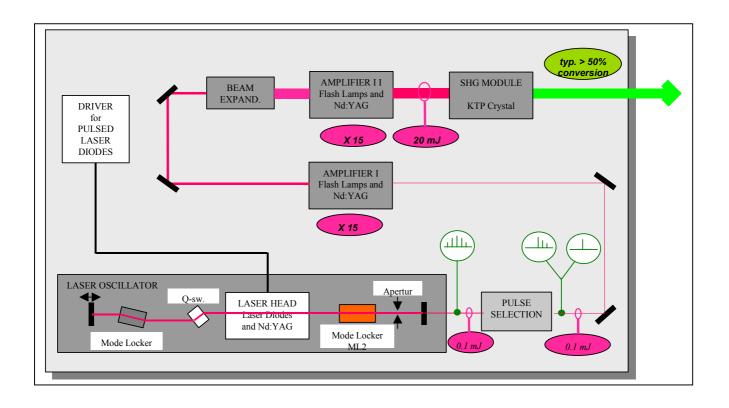
Mount

General Az-Alt, direct drives, digital servo, separately driven housing $20^{\circ}/s$; $4^{\circ}/s^2$ maximum velocity; acceleration < 1" : <5" pointing precision ; accuracy **Transmitting telescope** General Coude-Refractor, afocal, achromatic Entrance Aperture ; Output Aperture 45 mm; 130 mm (= 2.9) **Receiving telescope** Coude-Cassegrain, afocal, plane window on housing General Entrance Aperture ; Output Aperture 440 mm ; 48 mm (=9.12) **Transmitting focal unit** General variable beam expander, guiding system (CCD) 11 mm ; 45 mm Entrance Aperture ; Output Aperture **Receiving focal unit** General Apochromat 100/600, 2 CCD's, PMT, SPAD System focal length (incl. receiver 5.47 m telescope) Laser Type Diode-laser pumped Nd-YAG, 2 amplifiers 10mJ (532nm), 50 ps, 10 Hz, Single pulse data 1...10 pulses/shot **Electronics** HP58503B GPS receiver Time Base

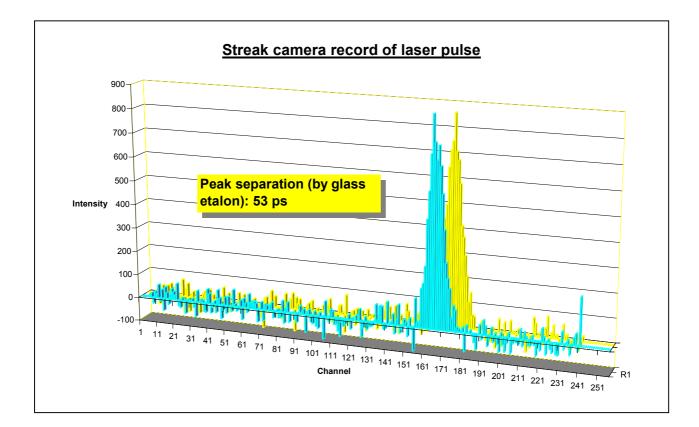

Time Base Epoch Timer Resolution Range Gate Resolution Time Interval Counter HP58503B GPS receiver 100 ns 10 ns SR620



Transmit and receive telescopes after integration (partially dismantled)


Optical Diagram of the Transmitting System:

- 1: Plane Mirror
- 2: Positive Achromat 130/1950
- 3: Negative Achromat
- 4: Cube Corner (for alignment only)
- 5: Dichroic Beam Splitter
- 6: Achromat 80/1000
- 7: Positive Lens
- 8: Negative Lens (Divergency Control)
- 9: CCD Camera



Optical Diagram of the Receiving System:

- 1: Window
- 2: Secondary Mirror
- 3: Main Mirror (Diameter 450 mm)
- 4: Cube Corner
- 5: Achromatic Triplett
- 6: Dichroic Beam Splitter
- 7: IR CCD
- 8: Intensified CCD
- 9: Flip Mirror
- 10: Field Stop
- 11: Spectral Filter
- 12 / 14: Receivers
- (SPAD/PMT)
- 13: Flip Mirror

Optical Diagram of the Laser

Status of Implementation:

- The hardware (except focal units) has been completed and integrated
- The optical and mechanical system is under alignment at the site
- It is expected to conduct first ranging experiments in 2001

References:

[1] R.Neubert, L. Grunwaldt, G.Sesselmann, M.Steinbach, "An Innovative Telescope System for SLR" Proc. EUROPTO Conf. On Laser Radar Ranging and Atmospheric Lidar Techniques II, Florence, Italy, September 1999, SPIE Vol.3865, p.83
[2] F.Maßmann, A.Hase, H.Voss,

The Spektrum AMG D Laser; An Innovative System, 11th Workshop on Laser Ranging, Deggendorf, Germany, September 1998