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PREFACE

This report discusses a study under Contract NAS 5-20580 for NASA Goddard Space

Flight Center which was conducted jointly by the Optical Technology Division

and the Electro-Optical Division of The Perkin-Elmer Corporation on a hollow

corner cube retroreflector (HCR). The purpose of the study was to determine

how the HCR, made up of three optically flat mirrors, would perform when under-

going the thermal-mechanical strains induced by a spacecraft environment. Of

particular interest was a device with an optical aperture of 200 square centi-

meters used on a satellite in a synchronous orbit. The satellite was assumed

to be stabilized in three axes with the reflector on the earth-facing side and

oriented so that its axis of symmetry was directed toward the earth's center.

The effects of direct solar irradiance, earthshine and albedo were considered.

The results included the maximum mirror surface temperature during the orbit

as well as the worst-case loss of optical performance resulting from thermally-

induced mirror distortions.

In order to conduct this thermal analysis as realistically as possible, Perkin-

Elmer fs efforts were first directed toward identifying various ways in which

the HCRTcould be fabricated, comparing candidate materials for the mirrors and

adhesives to be used in assembly, and considerations of the optical effects of

defects in the device. After careful consideration, Perkin-Elmer established

a preferred configuration employing a proven technique for fabricating the

optical assembly and optical materials with relatively low sensitivity to the

anticipated environment. The proposed preliminary design for the HCR was then

analyzed using mechanical and thermal computer programs available at Perkin-

Elmer. While not an exhaustive analysis, the results are considered representa-

tive of the actual worst-case condition in orbit.

It was concluded that a HCR made of three suitably coated flat ULE mirrors,

optically contacted to each other and supported mechanically in a nonrigid

mount, would be expected to perform quite well in the environment of a syn-

chronous satellite in spite of the deleterious effects of solar irradiation
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during the orbital period. The optical performance, measured in terms of the

energy contained in the central maximum of the retroreflected diffraction pat-

tern, should exceed 80 percent of that theoretically possible in the absence

of defects.

The investigation presented here represents the combined efforts of many in-

dividuals within Perkin-Elmer. Mr. Herbert Wischnia was responsible for the

initial planning phase of the investigation while Mr. Paul R. Yoder, Jr. was

the project engineer and chief investigator during the actual study effort.

Mr. Peter Minott, Code 722 of the Goddard Space Flight Center, was the NASA

Technical Officer.

The chief Perkin-Elmer contributors to technical aspects of this program were

Mr. Justin Kreuzer who investigated the diffraction effects in a hollow corner

retroreflector, Dr. Herbert Yanowitz who analyzed the anticipated thermal dis-

tortions of the device in a specific space environment, and Mr. Francis Foster

who calculated the retroreflected optical wavefront aberrations due to these

thermal distortions. Messrs. Joseph Vrabel, Edwin Pelkey, Walter Augustyn,

and Edward Strouse contributed many valuable suggestions in the areas of retro-

reflector design, surface coating technology, and component fabrication

techniques.

Continuation of this program through a detailed design, fabrication and test

phase is recommended. Under this follow-on effort, several prototype units

would be fabricated and evaluated in a simulated orbital environment in order

to provide practical experience and realistic performance data. It is be-

lieved that this is a logical and necessary next step toward the eventual

application of the HCR to an operational satellite.
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SECTION 1

DIFFRACTION INTEGRAL ANALYSIS

1.1 HOLLOW CORNER CUBE RETROREFLECTOR FAR FIELD CONSIDERATIONS

This section considers the pattern of the light reflected by a hollow corner

cube retroreflector (HCR) far away from the corner cube, that is, for distances
2

much greater than R A where A is the wavelength of light and R is the radius of

the HCR aperture. At such large distances, the light pattern is called the far

field pattern. This pattern is not a function of distance from the cube; it

is a function only of angular coordinates measured from the cube, the cube

orientation, and the cube properties as well as defects in those properties.

For the purpose of this analysis, it is assumed that only one of the cube param-

eters departs from an ideal HCR. An ideal HCR consists of three mirrors which

intersect at right angles in analogy to the corner formed by three adjacent

sides of a cube. Each mirror is a perfectly flat, front surfaced reflector of

infinite conductivity so that it is a perfect (i.e., 100 percent reflecting)

mirror which produces no undesired changes in the polarization of the reflected

light. The shape or aperture of the returned beam depends upon the angle of

incidence and the contour which defines the nonintersecting portions of the

three mirrors, as well as any aperture limiting structure in front of the HCR.

Let it be assumed that each of the three mirrors is terminated by a similar

curve. In particular, assume that the three mirrors are cut so that the re-

flector presents a circular aperture when viewed parallel to its axis.

It will be convenient to assume that the reflector is surrounded by a right

circular cylindrical tube or mask whose front edge is just flush with the cube

entrance face. Thus the HCR aperture at oblique incidence corresponds to the

common area of two identical, sheared intersecting circles.

1-1
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Assuming that a monochromatic plane wave is incident on the corner cube from

the desired direction, the far field pattern will be calculated in two sequen-

tial steps. The first step will use conventional geometric optical techniques

to calculate the returned wavefront just in front of the cube. This ignores

internal diffraction within the corner cube. Such diffraction appears to occur

in a single plane in the aperture of the corner cube. This will suffice in our

case as it includes the first order effects of any departures from the ideal,

such as gaps associated with the actual intersection of the mirrors and mirror

irregularities, including nonflatness, reflectance variations and polarization

properties.

The actual far field pattern is computed in the second step by taking the two-

dimensional Fourier transform of the returned wave.

When polarization effects are considered, the returned wavefront polarization

is calculated for each of two incident orthogonal polarizations, typically

"horizontal and vertical" linear polarization. The far field is computed by

taking the four Fourier transforms — one of the horizontal component and one

of the vertical component of the returned wavefront for each of the two inci-

dent polarizations.

The computation of the far field can be either analytically derived and then

numerically evaluated or evaluated numerically directly. In general, the

analytic expression is fairly complex even with only a single departure from

our ideal retroreflector. The analytic expressions are useful in understanding

the effect of various parameters upon performance, but are generally more com-

plex to evaluate numerically than a direct numerical computation.

The analytic far field expressions will be derived with the aid of the fol-

lowing general expressions. The far field pattern energy density can be ex-

pressed as the function:

F (p.4») =7 = -^ |u (p,<{>)| 2 - (i-l)
Xo X2
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where I is the far field angular energy density in watts per steradian and. 1
o

is the incident light energy density just in front of the corner cube in watts

per square meter. U (p,4>) is the (scaled) two dimensional Fourier transform

of U (r,<j)) , the returned wavefront near the cube written in terms of conven-

tional polar coordinates (r,9) in the plane perpendicular to the direction of

the incident and returned beams.

U (p.*) - // u (r.8) e'jkpr COS (*~6) rdr d9 (1-2)

where

r is in meters

6 is in radians

OTT

k = -r- is the wave number
A

(p,<J>) are the corresponding polar (spherical) coordinates, respectively,

in the far field. Both p and <}> are in radians with an origin at the cube

and p = 0 corresponding to the incident or returned beam, p corresponds

to latitude and <j) corresponds to longitude.

The far field pattern is related to the classical radar cross section:

0 = 47T F (1-3)

The Bradley or velocity aberration causes an additive angle offset in the far

field patterns in the direction of motion. This is ignored here. The correc-

tion is easily made. In the absence of aberration, the energy density re-

turned is
.2

F (0,0) = ̂ r- (1-4)
X2

where A is the corner cube cross sectional area as seen by the transmitter.

This area is a function of the cube orientation.

1-3
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At large angles away from this region, we observe the complex fringe pattern

normally associated with diffraction from a complex aperture. The energy

density at larger angles is essentially a function of the aperture edge shape.

When the fringes are averaged out, the energy decreases proportionally to

p where n = 2,3 or 4 in different directions, depending upon whether the

diffraction arises from a straight or curved edge or vertex (corner) of the

aperture.

1.1.1 Normal Incidence

The far field pattern at normal incidence of an HCR of aperture radius R is

the Fourier transform of a circular aperture which is merely the conventional,

well-known Airy diffraction pattern given by

f\
(7TR2)2 /2J&(P)\

F (p,<j>) = X2 \ p / (1-5)

where, in general, Jj(P) is the I Bessel function.

Here it will be convenient to write

P = Rkp ^~ — (1-6)

to define a scaled polar far field radian angle. The center of the far field

pattern in the direction of the geometric retroreturn is given by

2 2
F (0,0) = -^~ (1-7)

At large angles, the far field pattern can be approximated quite accurately

by

An 9 o
F (P,*) % -—. cosZ(P-fir) (1-8)

TT PJ

1-4
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If we average out the interference fringes, the average far field energy is

given by

XR
(1-9)

Here it is seen that the energy falls off according to the cube of the angle

away from the main return.

1.1.2 Oblique Incidence

The far field pattern of our ideal corner cube for oblique incidence is the

Fourier transform of the common area of two sheared circles. The Fourier

transform may be conveniently evaluated by utilizing the property of linearity

and noting that the common area of two sheared circles can be represented by

the sum of the areas of the two segments minus the area of the rhombus (see

Figure 1-1). The Fourier transform of the circular segments is most easily

NOTE: © INDICATES THE COMMON CENTER.

Figure 1-1. HCR Aperture for an Oblique Incidence Wavefront

1-5
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derived in polar coordinates while the Fourier transform of the rhombus is

most readily derived in Cartesian coordinates. The Fourier transforms of

these three figures are then added with the appropriate phase corresponding

to their position. The scaled Fourier transform of the two sectors with the

common center shown in Figure 1-1 is

CO
o

U ( p , < j > ) = 4 9 R I G (P) sincfce cos(Pcos9 cos<j> + *£) cosi<J> (1-10)
s ° &=0 ° °

where it is convenient to define the functions sine x =. sinx/x; sinc(O) =. 1

and

Gfl(P)

2
j.(x) xdx for i / 0

o
(1-11)

_L fP
1P2J J

J,<P)
j (x) xdx = ~ for i = 0
O *ro

and the following relates the sector angle 9 to the angle of incidence or

return i to the corner cube normal:

8Q - cos'
1 (/Itan i) (1-12)

The scaled Fourier transform of the rhombus is

U (p,*) =R2sin2 9Q sine [-| P cos (6Q+<fr)] sine [j P cos (9 - <fr) ] (1-13)

Thus the far field pattern at oblique incidence is given by Equation (1-1) and

U(p,<j>) = U (p,*) - U (p,<J») (1-14)
S IT

This is a complex expression. It is informative to consider briefly two special

cases separately — one for the peak retroreflection and a second expression for

large angles. The central peak return of the far field pattern is proportional

to the square of the cross-sectional area presented by the hollow corner cube.

1-6
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This is given by

TTR —X- ] (1 - sine 26 )— ' v o (1-15)

The far field pattern at large angles may be derived from the asymptotic ex-

pressions for diffraction. The energy at larger angles in the far field is

found to fall off the cube of the off-axis angle in Region A of Figure 1-2 and

with the fourth power of that angle in Region B.

The far field pattern at larger angles is associated primarily with diffrac-

tion from the edges of the corner cube. We have assumed that there are no

"gaps" where the corner mirrors meet within the reflector. If there were,

these would contribute to the far field pattern at large angles for both nor-

mal and oblique incidence. Asymptotic expansion of the far field pattern for

larger angles with the fine interference fringes averaged out yields for

Region A:

F (p,<f>)
XR

for |p|» R cos 6 (1-16)

NOTE: THE VECTOR p^HAS
THE SAME ORIENTATION AS
r IN FIGURE 1.1 SO 8=0
CORRESPONDS TO cp= o.

jr.
2

Figure 1-2. Far Field Coordinates

1-7
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This is the same as Equation (1-9). Likewise, we find for Region B:

,2 sin229 ! x

F (P,<f>) * -~ 2 2—5 1 for P>:> (1-17>
87T cos (6 + 4>) cos (9 -«j>) p R sin9

The smaller value of Equations (1-16) or (1-17) applies in Region B near the

four boundary lines.

Diffraction from Region A is associated with the curved portion of the aperture,

while that in Region B is associated with the two vertices of the aperture.

1.1.3 Reflectance Variations

Mirror reflectance variations will be associated directly with polarization

effects. These effects should be combined directly with the associated polari-

zation effects and the far field computed numerically as previously mentioned.

Here, reflectance variations will be considered alone. Uniform differences in

reflectance for each of the three mirrors that are not a function of the angle

of incidence do not show separately in the wavefront because all of the rays

bounce from all three mirrors. The most significant effect is that the re-

turned energy will be lowered by the triple reflection. In general, the as-

sociated polarization effects will be even more important. The reduction in

the central returned beam energy is a complex function of the angle of in-

cidence, the basic reflector and -any dielectric coatings which may be placed

over the reflector to improve the reflectance at certain wavelengths and to

control polarization changes.

Next, we will consider briefly the effect of small reflectance variations

(mottling) over the surface of a mirror. Such mottling will scatter light

out of the main returned beam in analogy to the effect of small random wave-

front errors. A single flat mirror reflecting light near normal incidence

will be considered now.

Let the mirror have a mean energy reflectance R and a small random reflec-

tance variation with a standard deviation AR . Likewise, let the mirror
rms '

1-8



ER-275

surface have a small random low spatial frequency depth variation with a stan-

dard deviation AD . The reflected wavefront has twice the deformation. The
rms

reflectance and depth variations are uncorrelated. The main returned beam

energy from such a simple mirror is proportional to

Ro P-f l̂ -iT̂ ] * 167T l-T^J I d-18)

in analogy to the conventional phase-dependent Strehl intensity. Here we see

that reflectance variations are not important. For example, if R = 1, a re-

flectance standard deviation of AR =0.2 reduces the main return by onlyrms
one percent, which corresponds to the reduction due to a surface depth standard

_0

deviation of AD /X = 8 x 10 waves corresponding to a wavefront phase defor-
rms

mation of twice this amount. The reflectance is not likely to be this non-

uniform, and the mirrors are not likely to be so smooth. Thus reflective

variations seem unimportant.

1.1.4 Dihedral Angle Errors

Here the far field pattern of our ideal cube at normal incidence with small

dihedral angle errors will be considered. We will follow the notation and
2 3

use the results of Yoder and Chandler. ' The dihedral angle errors, a, 3> Y

are the angles in radians in excess of ir/2 radians between the three mirrors

labeled a, b and c, respectively, in Figure 1-3.

The far field can be written with the aid of Equation (1-1) as a sum of six

scaled Fourier transforms, one from each TT/3 radian sector.

6
U (p,<J>) = I U? (p,<f>) (1-19)

A=l *

Each sector has a linear phase due to the plate angle errors. The phase is

negative in opposite segments. The returned wavefront phase is continuous at

1-9
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MIRROR EDGES

•REFLECTIONS

Figure 1-3. Wavefront Sectors

the center of the cube. The scaled Fourier transform of the returned wave

from the I segment is

U£ (p,4>) = f R i sine (m -T-) e
m=0

TT

2
COS m (1-20)

where

cos (1-21)

and

tan
-1 p sin <J) - A0 sin9

p cos A. cos60
At Xf

(1-22)

1-10
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are linearly translated polar coordinates. The translation is due to the

wavefront linear phase error. Here

A^ = 2 /(a2 + 02 + Y2) - J B^ (1-23)

may be considered to give the magnitude or latitude of the error in radians and

9fl - sin'
1 |K/| cj (1-24)-i r i /rc iIV3 C»J

gives the corresponding orientation or longitude.

The symmetry of the cube yields

A=A A = A A = AAl A4 A2 A5 3 6

e, - e. + TT e_ - e. + TT e_ = e, + TT (1-25)
1 4 2 5 J o

and the actual wavefront errors are related to the plate angle errors by

BI = a - 3 + Y B2 = a - 6 - Y

(1-26)

1.1.5 Mirror Plate Distortions

Small random low spatial frequency mirror surface distortions or departures

from flatness will reduce the central returned beam by sending some energy

into large angles as mentioned in Section 1.3.3. At normal incidence, the

beam returned by a single distorted mirror is reduced by

i f AD \ 2

6 = 167T
2

where, as before, AD is the standard deviation of the surface depth distor
rms

tion. The wavefront deformation is twice this amount. Three consecutive

1-11
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reflections at near normal incidence from different mirrors with different

independent random distortions reduce the returned beam by 36. However, at

normal incidence the retro mirrors are not normal to the beam. This reduces

the wavefront distortion in analogy to the way slightly rough surfaces look

smooth and become mirrors at grazing incidence. In our case, the returned

beam is reduced by only 26 for three reflections. Thus three mirror surfaces,

each with a standard deviation of about 0.01 wave root mean square, reduce the

main returned beam by about 3 percent while a 0.02 wave reduces the return by

about 13 percent.

1-12
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SECTION 2

POTENTIAL HCR CONFIGURATIONS

2.1 COMPARISON OF CANDIDATE CONFIGURATIONS

There are many ways in which a HCR can be fabricated. Nine candidate configu-

rations and several variations were considered under this study. Each involved

different manufacturing processes and varying degrees of difficulty in pro-

viding the required precision. Some configurations were superior to others in

regard to their potentiality for retaining mutual perpendicularity of the mir-

ror surfaces in orbit over a three- to five-year life span.

It should be noted that, if the optical precision requirement were to be re-

laxed substantially from a level limited primarily by diffraction in the visible

spectrum, then technical problems would become secondary. Any of the HCR con-

figurations suggested here could provide this reduced performance and the choice

between them would shift to economic considerations — we would be interested

only in which HCR can be produced at lowest cost. For the immediate purpose

of this study, we are confronted by the more complex problem of finding the

most cost effective way of making a high precision HCR which will perform ade-

quately in the environment of a synchronous satellite.

In the paragraphs which follow, each of the nine basic configurations that were

investigated are briefly considered. Table 2-1 compares the characteristics of

these concepts in summary form.

2.1.1 Optically Contacted Plates (Figure 2-1)

This is an obvious HCR candidate. Even though there are four precise angles

to generate, the most difficult task would be the assembly of the compound, or

bias, joint. The plates may be plane-parallel or sculptured as shown. The ap-

propriate approach would be to assemble two plates, together with the required

mutual perpendicularity, and then to grind and polish the base of the "V"

2-1
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CONCEPT 1A
EDGE-CONTACTED

PLATES

CONCEPT IB
EDGE-CONTACTED PLATES WITH

BIAS JOINT

CONCEPT 1C
EDGE-CONTACTED PLATES WITH
TAPERED PLATES AND BIAS JOINT

Figure 2-1. Optically Contacted Plates
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assembly to obtain a common surface to mate with the third mirror. The base
_ t

polished surface must be mutually perpendicular to the other two reflector

surfaces. The process of optically working the "bonded" assembly would be

expected to be difficult because the bond will tend to separate. If this

potential manufacturing problem could be solved, the device should be quite

satisfactory.

The bottom optical flat is a simple precise flat. Joining the "V" to the

flat seems to be a reasonably easy task.

The main advantage of this concept is the simplicity of the assembled struc-

ture. However, since it is conceptually related to the configuration of

Figure 2-9 and that configuration avoids the potential manufacturing problem,

this configuration is not recommended for further consideration.

2.1.2 Epoxy Joined Plates (Figure 2-2)

This is a variation of the optically contacted plates (refer to Paragraph 2.1.1),

but here the difficulty of generating precise angles is replaced by problems

of holding alignment during setting up of the bonding agent (epoxy). The ap-

proach with its variations implies that the strength of the structure to main-

tain its integrity is dependent upon the agent used. The assembly process

would use a precise, hard manufacturing tool or fixture, which would permit ad-

justment of the reflector plates while the epoxy is hardening. In order to

execute adjustment while the epoxy is setting, an interferometer is used to

establish the proper adjustment.

The technique has much to recommend it if the epoxy joint is temporally stable

at temperatures that the HCR is likely to encounter. It must be noted that

this is one of the basic principles of the reflectors manufactured by Precision

Lapping and Optical Company, Inc. (Valley Stream, Long Island, New York), and

their products have been acceptable for many applications (see Appendix A). At

this time, we have no conclusive evidence to support Precision Lapping's ad-

vertising literature..."Operation is unaffected by humidity, dust, salt spray

or temperatures from 0°F to 140°F...". It has been Perkin-Elmer's experience

2-4
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CONCEPT 2A

EPOXY JOINT (SCULPTURED PLATES)

CONCEPT 2B

EPOXY JOINT (SCULPTURED JOINT)

CONCEPT 2C
TYPICAL JOINT
CONFIGURATION

Figure 2-2. Epoxy Joined Plates
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that even small epoxy seams on very stiff low-expansion glass plates induce

stresses which cause the plates to distort in time with temperature and humid-

ity variations. The epoxies we have tested are hygroscopic to some degree.

Some epoxies also outgas in a vacuum. Apparently, Precision Lapping has over-

come these difficulties, at least in part, through use of proprietary techniques

and/or materials.

2.1.3 Internal Structure (Figure 2-3)

The obvious disadvantages of this concept are (1) that there is a central ob-

scuration and (2) that there are eight optical flats to polish plus four precise

angles to generate. The concept is fundamentally deficient in that the inter-

nal structure is located near the apex and, consequently, the plates are canti-

levered out. The internal structure arrangement is complex and very sensitive

to exact procedures on assembly. Perkin-Elmer does not recommend further con-

sideration of this approach.

2.1.4 External Structure (Figure 2-4)

An examination of the numerical comparisons in Table 2-1 would favor this ar-

rangement over almost every other concept. However, from a practical point

of view, the probability of success of a truly precision HCR using this ar-

rangement is extremely small. Again, it would be imprudent to rule it out

categorically. Perkin-Elmer has experimented with this type of arrangement

and concluded that it can be used only to obtain precision in the range of

multiples of arc seconds.

2.1.5 Core-Out Solid (Figure 2-5)

This concept is the ultimate in terms of simplicity and hence reliability.

However, it has never been executed in real hardware, and it does require very

sophisticated optical manufacturing and coating techniques to"produce the ex-

tremely "concave surfaces" mutually perpendicular and without "turned" edges

on the surfaces. If a material such as beryllium were to be used, the raw

material and machining costs would .be high. Coating such a deeply concave

assembly after polishing would also be complex and costly.
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INTERNAL STRUCTURE, ALL JOINTS OPTICALLY CONTACTED

CONCEPT 3A

INTERNAL STRUCTURE, STRUCTURE EPOXIED TOGETHER

TYPICAL EPOXY JOINT

CONCEPT 3B

Figure 2-3. Internal Structure
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CONCEPT 4

Figure 2-4. External Structure (with Adjustable Attachment to Plates)

CONCEPT 5

Figure 2-5. Core-Out (with Single Block and then Polish Inside
Reflector Surfaces)
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2.1.6 Epoxy Replication (Figure 2-6)

This concept in which the entire HCR is made of an epoxy or similar material

is excellent for approaches in which the driving requirement is low cost with

only low to modest requirements for precision. If the HCR were to operate

only in the far infrared, the idiosyncrasies of the plastics could perhaps

be tolerated. For the present application, it should not be seriously con-

sidered. If, and when, new stable plastics are developed and tested, this

concept could be resurrected.

CONCEPT 6 [ PRECISION MALE MANDREL

Figure 2-6. Cast Epoxy Replication

2.1.7 "Pelkey Prisms" (Figure 2-7)

One of the most difficult tasks involved in the assembly of precision hollow

corner cubes, the component joint, is eliminated in this HCR configuration.

Two right-angle prisms are simply positioned on a third (larger) right-angle

prism. There is a natural point for attachment of the HCR to the outside

world. This is the apex on the bottom porro-type prism as can be seen in

the figure.

The concept is based upon a related device utilized successfully in Perkin-

Elmer products. The only problems for the HCR application are in establishing

the proper technique for contacting the prisms at the appropriate 90 degree

angle and thermal problems caused by nonuniform thickness of the mirror

elements.
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PELKEY HCR PRISMS IN OPTICAL CONTACT

CONCEPT 7A

NO
CONTACT

PELKEY HCR PRISMS (WITH SCULPTURED PRISMS FOR WEIGHT REDUCTION)

CONCEPT 7B

Figure 2-7. The "Pelkey Prism" HCR
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2.1.8 Exterior Structure with Replicated Surface (Figure 2-8)

This approach might work if the surface can be made exceptionally thin and

stress-free and the mechanical structure adequately stiff. Experience with

replaced mirrors for space applications and replicated diffraction gratings

indicates that few arc-second angular accuracies are possible and X/l to X/2

surface figures are obtainable. The validity of the concept as a HCR can

only be established by experimental work in the optical shop with thermal test-

ing. Since the concept seems quite marginal for the present precision appli-

cation, Perkin-Elmer recommends no further consideration.

2.1.9 "Vrabel HCR" (Figure 2-9)

This configuration is similar to concepts 1 and 7 (refer to Paragraphs 2.1.1

and 2.1.7) with one fundamental exception. The assembly of the concept 1

version requires each plate to have several precise angles and contacting in

two meridians. The assembly of the "Pelkey HCR" requires that the two small

prisms be contacted to the base prism at precisely 90 degrees to each other.

The Vrabel concept eliminates those exacting assembly operations and trans-

fers the difficulty to the precise manufacture of the one mirror plate which

serves as the base structure for the assembly. This base structure can be

manufactured with adequate precision in the optical shop. Precise,large,
4

open face reflectors like this have been made and tested, and they do work .

In the referenced prior development, Cervit substrate assemblies were sub-

jected to extensive thermal testing from -2°C to +68°C and the thermally in-

duced change in full aperture wavefront was 1/4 wave peak-to-peak at 6.328 x
-4

10 mm . Consequently, this concept is considered to be the best of the nine

approaches.

Careful sculpturing of the base plate and of the two side plates can reduce

the weight to a minimum. The thickness of the base plate is'only that amount

necessary to insure structural integrity of the HCR and to allow the angles

to be measured reliably.

This approach is highly recommended for further development as having a high

probability of technical success, a modest cost and a low weight.
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CONCEPT 8

PRECISION MALE MANDREL

MACHINED METAL STRUCTURE

THIN EPOXY REPLICATED SURFACE

Figure 2-8. Exterior Machined Structure with Replicated Optical Surface

CONCEPT 9

NO
CONTACT

Figure 2-9. "Vrabel HCR" - Plates and Base in Optical Contact
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2.2 GEOMETRICAL RELATIONSHIPS IN A HCR

In the preceding section, various potential configurations for the HCR were

presented. The most favored concepts fall into two basic configurations:

flat plates attached to each other or triangular prisms attached to each

other. For the intended application, the latter concept is less attractive

since it is likely to be heavier and the nonuniform thickness of the mirror

elements will tend to accentuate nonuniform thermal gradients through those

elements while in orbit. The flat plate configurations therefore are con-

sidered preferable for the present application.

This section provides some basic geometrical considerations of the HCR and

includes size and mass calculations for "glass" and beryllium components with
2

200 cm apertures and constructed either as concept 5 (the core-out solid

beryllium discussed in Paragraph 2.1.5) or concept 9 ("Vrabel HCR" discussed

in Paragraph 2.1.9). Cervit and ULE are considered the most favorable poten-

tial materials for the latter concept.

Figure 2-10 shows the general configuration of a corner reflector while

Table 2-2 utilizes the equations of that figure to calculate the dimensions

of the 200 cm2 HCR.

Figure 2-11 shows the area utilized on the reflector face when the HCR is

viewed along its axis of symmetry from an infinite distance. If, in the in-

tended application, the HCR Tine of sight is very nearly stable with respect

to the transmitter on the earth, this is the only aperture which needs to be

provided on each mirror. Figure 2-12A shows a full-size wooden mock-up of

a HCR with mirrors configured as shown in Figure 2-11. The construction is

representative of the Vrabel "optically contacted" HCR. Figure 2-12B shows

a variation of that same concept, also in full-size mock-up form, but having

mirror faces of quarter-circle shape rather than elliptical ones. Figure

2-12C shows a mock-up similar to that of Figure 2-12A but having mirrors with

straight edges approximating the elliptical contour. This concept has a

backing plate "cemented" across the opening between mirrors after contacting.
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CIRCULAR APERTURE
USED AT INFINITY

60° (3 PLACES)

ELLIPTICAL
CONTOUR OF

APERTURE USED
AT INFINITY

Location
of point
"P"

on face

9

H
w
A
A'
z
d

54.7356°
35.2644°
r tan 0=
r/cos 9
H/sin ¥
r/cos <p
x cos f
2 tan Y

1.414214r
1.732050r
H/cos 9 -
1.224744r
0.816496x
0.707107z

r tan 9/cos 9 = 2.449488r

V r2 -

Figure 2-10. Geometrical Relationships
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TABLE 2-2

DIMENSIONS FOR A HCR WITH APERTURE AREA = 200 cm

Area = 200 cm2 = irr2

r = 7.979 cm = 3.141 inches
H = (1.414214)(7.979) = 11.284 cm
W = (1.732050)(7.979) = 13.820 cm
A - (2.449488)(7.979) = 19.544 cm
A1 = (1.224744)(7.979) = 9.772 cm =

= 4.443 inches
= 5.441 inches
= 7.695 inches
3.847 inches

Recommended plate thickness = 1/6 to 1/8 W = 2.304 to 1.728 cm.
Assume 2 cm for thermal and mass models.
Aperture contour on reflector face (dashed line in Figure 2-10)

6.91

7.50

8.00

8.50

9.00

9.50

10.00

10.50

5.6420

6.1237

6.5320

6.9402

7.3485

7.7567

8.1650

8.5732

3.9895

4.3301

4.6188

4.9075

5.1962

5.4848

5.7735

6.0622

6.9100

6.7018

6.5062

6.2914

6.0551

5.7949

5.5074

5.1879

11.00

11.50

12.00

12.50

13.00

13.50

13.820

0

8.9815

9.3897

9.7980

10.2062

10.6145

11.0227

11.2840

0

6.3509

6.6395

6.9282

7.2169

7.5056

7.7342̂

7.9790

0

4.8302

4.4251

3.9578

3.4031

2.7075

1.7073
0~~

r=7.979

Plotting y vs x provides exact contour of aperture (See Figure 2-11) .

NOTE; This is ellipse with eccentricity "e" given by:

e = c/a = -y a2

where a = w = 13.820 cm

b = r = 7.979 cm

e = 11.2838/13.82 = 0.816
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face angle to tangent @ "P̂ "

B23
tan~^ ——

4- 45

x =

-1

6.91 cm, bVa^ - 0.3333

5 - tan A 0.3333 + 45° = 18.435° + 45° = 63.435°

2Area of face = irab - 1̂3.820̂
~2~ V 2 /

173.211 - 47.748 - 125.463 cm"

13.82
(TO SHARP COBNER)

13.82
(TO SHARP CORNER)

Figure 2-11. Reflector Face Area Utilized at
Infinity and Symmetrical Incidence
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Photographs of Full-Sized Wooden Mock-Ups of
Four Types of HCRs (Sheet 2 of 2)
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The size and weight advantages of the Figure 2-12A configuration over that

shown in Figure 2-12B are indicated in Table 2-3. The assumptions made for

parameters such as plate thickness are noted in the table.

Figure 2-12D shows a mock-up of an all-beryllium HCR configuration having

straight-line mirror contours. Considerations of the potential problems and

cost of fabricating this device to the precision required for the present

application have led us to the conclusion that it is not a viable approach.

2.3 PROPERTIES OF POTENTIAL HCR MATERIALS

2.3.1 Dimensional Stability

In order to perform reliably, the HCR plate materials must be resistant to

deformation in deleterious thermal and "g" force environments. Even more im-
2

portant, a diffraction-limited 200 cm HCR depends upon the existence of ma-

terials that exhibit sufficient dimensional stability. If the operating

temperature of the HCR is likely to differ from the ambient temperature at

which it is fabricated, then a second condition — that of an isotropic co-

efficient of expansion — is necessary. If the latter condition is not met,

then nominal changes in the operating temperature will warp the optical sur-

faces and destroy the optical performance. Present evidence indicates that
2

the stability and isotropy requirements of the 200 cm area HCR are suffi-

ciently severe that few materials are actually available, particularly in

combination with desirable characteristics such as a high elasticity-modulus-

to-density ratio and a high thermal-diffusivity-to-coefficient-of-expansion

ratio. Table 2-4 lists these and other characteristics of a variety of po-

tential HCR materials.

The coefficient of expansion of both fused silica and silicon decreases with

temperature and, in both cases, crosses zero and becomes negative. Figure

2-13 shows the variation of coefficient with temperature for a typical sample

of fused silica (Englehard Industries, Inc., Hillside, New Jersey) and for a

single crystal of silicon. A number of devitrified glass materials, such as

Pyroceram (Corning Glass Works, Corning, New York) and Cervit (Owens-Illinois,
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TABLE 2-3

SIZE AND MASS COMPARISONS OF TWO HCR CONFIGURATIONS

CONFIGURATION PER FIGURE 2.12A;

A - Using "Glass-Type" Material

Assume two mirror plates 2 cm thick and third plate 5 cm thick. To

reduce mass of plate and make "glass" plate more easily fabricated,

remove triangle

S (J
© • V-L = (4) (9.78) (2) - 78.24 cm'

V2 = (125.46)(2) = 250.92 cm
2

V, = (4)(2)(3)

9.78 where

Hence, V-

Total volume of HCR = (Vx + V2 - V3)(2) + (2.5)(V )

= 626.32 + 627.30 = 1253.62 cm3

4 tan (90° - 5)
4 tan 26.565°
2 cm

(4) (2) (2) = 16 cm2

Total mass of HCR for:

ULE (p.- 2.21 g/cm3)
Cervit (p = 2.50 g/cm3)

2.77 Kg
3.13 Kg

•J
B - Using Beryllium Material (p = 1.82 g/cm ) All plates 2 cm thick.

Total volume of HCR = /Vi+ Y2) + ^

Total mass of HCR

(39.12 + 250.92) (2) + 250.92

(831.00)(1.82) - 1.51 Kg

831.00 cm-
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TABLE 2-3 (Continued)

CONFIGURATION PER FIGURE 2.12B;

A - Using "Glass-Type" Material

Assume two mirror plates 2 cm thick and third plate 5 cm thick.

r=13.82 Vx - (13.82)(4)(2) = 110.56 cm'

V2 = (Tr)(13.82)
2(2) = 300.01 cm3

4

Total volume of HCR - (Vx + V2)(2) + (V2)(2.5) = 1571.17 cm-

Total mass of HCR for:

ULE (p = 2.21 g/cm3) = 3.47 Kg .

~~ Cervit (P " 2.50 g/cm ) - 3.93 Kg

B - Using Beryllium Material (p = 1.82 g/cm ) All plates 2 cm thick.

Total volume of HCR

» (55.28 + 300.01)(2) + 300.01

- 1010.59 cm3

Total mass of HCR = (1010.59)(1.82) = 1.84 Kg
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Figure 2-13. Coefficient of Expansion of Typical Materials
Variation with Temperature
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Toledo, Ohio), can be tailored to hug the zero coefficient of expansion line

over an extended temperature range. These relatively new materials closely

resemble true glasses, are polishable, and do not exhibit the severe scatter-

ing of earlier materials. Curves for Cervit C100B and ULE are also shown in

Figure 2-13.

One method of gauging the stability required in an HCR plate of M.4 cm maximum

dimension is to compute the maximum strain in a flat plate which, for some

reason, has become bent so as to appear to have optical power. Assuming sim-

ple bending, then the maximum strain occurring at the front and back surfaces

is given by

max _2

where

d = HCR plate thickness = 2 cm

D = HCR plate maximum dimension = 14 cm

— = peak-to-peak mirror surface tolerance = -rr-

-4
X = 5.5 x 10 mm

Assuming a dimensional instability tolerance equal to the figure error, and

taking the plate dimensions as indicated above, then the instability tolerance

corresponds to a maximum strain of 1.1 x 10 . This is an incredibly small

number. It lies at least an order of magnitude below conventional material

testing methods and illustrates the interferometric level of dimensional

stability required in the HCR plates.

Very little information is available on the dimensional stability of materials

subject to low stresses and nominal temperatures. Of the available data, per-

haps the most comprehensive is the research done by the Massachusetts Insti-

tute of Technology Department of Metallurgy. ' This work included an inves-
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tigation of dimensional changes in metals occurring in a constant temperature

environment as well as changes induced by cyclic temperature changes. Small

changes over long periods of time are typically a few microinches per inch.
0

These changes would not necessarily be detrimental in a HCR if the changes

happen symmetrically so that the mirror plates simply change in size and no

change occurs in the figure of the corner cube. Directional nonuniformity

is inferred by the generally accepted theory that stress relief and inter-

molecular instabilities are chiefly responsible for dimensional changes, since

there is no reason to believe that stresses or concentration gradients are

symmetrically arranged in all structures. The Stratoscope II mirror fabri-

cated and tested by Perkin-Elmer provides some data which are directly ap-

plicable to the HCR mirror materials problem. These mirror tests were con-

ducted after the mirror had withstood the rigors of an extended (i.e., '

many years) operational period. This showed the figure to be virtually un-

altered and indicates that fused silica is one of the few exceptionally stable

mirror materials. Similar results might be expected of selected, high quality

Cervit or ULE.

The various mechanisms responsible for material instabilities are not well

understood. Impurities or the presence of alloying elements can contribute

to spontaneous changes in many different ways. Even if the impurities remain

segregated, then stress concentrations around the impurities caused by co-

efficient of expansion differences can -cause plastic deformations. In the

unlikely event that impurities are absent, then the relaxation of stresses

originating from temperature differences in the casting during its formation

in the mold can also cause spontaneous plastic deformation.

No hard and fast rules exist for the selection of dimensionally stable mate-

rials . It is known that yield in crystalline materials occurs through the

motion of dislocations through the crystal lattice and that the number and

mobility of dislocations vary widely, depending on the binding energy between

atoms, the lattice structure, the stress distribution, and the type and con-
7 8

centration of impurities. ' Apart from glasses, which have a low thermal
9 10conductivity as a result of their amorphous molecular structure ' , the
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most promising mirror materials appear to be pure elements or compounds which

form light, hard, cubic crystal lattices. A light crystal lattice is most

likely to have a high elastic-modulus-to-density ratio and the immobility of

the dislocations is exhibited in the bulk lattice as hardness. A cubic lat-

tice ensures that the crystal is isotropic whereas hexagonal lattices are

almost always anisotropic as, for example, in the case of beryllium.

Carbon and silicon possess cubic lattice structures but the cubic form of

carbon (diamond) has very obvious economic drawbacks. Silicon has found ap-

plication as an optical material for infrared components such as lenses and

domes. Polycrystalline silicon can be ground and polished using conventional

curve generators and polishing laps.

The state-of-the-art for silicon optical elements is about a tenth wave over

a 12-inch diameter surface. This sort of tolerance is characteristic of the

best refractive optical elements, and implies a considerable degree of dimen-

sional stability.

2.3.2 Thermal Stability

The amount of thermo-elastic distortion accompanying a given temperature dis-

tribution in a HCR is a complex analytical problem for any but the simplest

physical configurations and temperature distributions. For the dynamic situa-

tion of a HCR moving in and out of sunlight and with conduction as the main

heat transport mechanism, the term K/Cp= (see Table 2-4) appears to be the

most suitable criterion to compare HCR plate materials with each other from

the thermal point of view.

In terms of immunity to thermal distortion, silicon and ULE appear to be out-

standing, with silicon having a K/Cp*1 value a factor of 10 better than alumi-

num and beryllium, and a factor of 30 better than fused silica. The coeffi-

cient of expansion of the type of invar used in the comparison does not

compensate sufficiently for the low heat conductivity to provide any obvious

advantage. There are special invar compositions with coefficients of expan-

sion that are smaller than the one chosen as an example, but the coefficient
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is small only over a narrow temperature range which detracts from their use*-"

fulness. Note that Cervit is better than beryllium but poorer in the K/Cpa

term than ULE or silicon. As will be shown in the detailed thermal analysis

of Section 3, ULE is better than Cervit by a 3:1 ratio in terms of mirror

distortion due to thermal inputs from the sun in a synchronous orbit.

The thermal diffusivity (K/Cp) of the various materials described in Table 2-4

is somewhat analogous to the reciprocal of the time constant in an electrical

system so that a large value of K/Cp indicates a relatively short time to

adjust to a new thermal environment. This should be a minor consideration

in the selection of plate materials for the orbiting HCR since the environ-

ment changes quite slowly during most of the orbit.

2.3.3 Compatibility with Optical Fabrication

All of the materials suggested in this report for use in the HCR mirrors are

compatible with optical fabrication by more or less conventional techniques.

For ease of fabrication and consistency of the end product, fused silica and

Cervit rank highest of all those materials considered (see Table 2-4). How-

ever, experience with multiple-mirror devices resembling the HCR is limited.

The closest comparison is with the optically contacted Cervit penta and penta-

roof mirror structures successfully developed by Perkin-Elmer and described

in Reference 4. The very low thermal expansion of Cervit facilitates produc-

tion of flat optical surfaces. As a raw material, it is very homogeneous and

predictable in its response to grinding and polishing processes. This leads

us to prefer Cervit for the HCR.

The primary reason that ULE does not occupy this position of esteem is that

some samples of that material processed in Perkin-Elmer's shops have lacked

homogeneity. Careful selection of the raw material would remove this poten-

tial objection to use of ULE but would tend to increase cost. Its favorable

thermal characteristics and generally good workability would then be expected

to lead to a high quality HCR.
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From the coating viewpoint, all of the glass-type materials considered here

would be equally satisfactory. It would be highly desirable for all coating

to be done on the individual mirror plates before they are contacted or

bonded together since this allows a more uniform layer to be deposited on

the substrate than if the complete HCR were to be coated as an assembly. Cost

of the coating operation also would be minimized if the mirrors are handled

separately since this reduces the complexity of masking requirements and

simplifies the fixturing required.

2.3.4 Optical Coating Considerations

Evaporated thin metallic films, overcoated with protective layers of a di-

electric, are conventionally used on the actual reflecting surfaces on optical

mirrors. The literature in this field is extensive; excellent summaries may

be found in References 11 and 12. Reflectance and durability characteristics

of some typical standard coatings are listed in Table 2-5. The "fresh" alu-

minum and silver listings are interesting but not too pertinent since exposure

to the atmosphere tends to reduce these values and their durability is low.

Silicon monoxide is a useful protective overcoat for the visible and near-

infrared regions. Magnesium fluoride is used primarily in the ultraviolet

region. Multiple layer dielectric overcoats -can be used to enhance reflec-

tance but their durability is low, and if many layers are used, stress is

induced into the coating and the roughness of the optical surface increases.

The coating characteristics of prime interest for the present HCR application

are reflectance (R.) in the spectral region of the source used to illuminate

the device from the earth, the solar absorptivity (a ) and the infrared emis-
s

sivity (e). The ratio of a /£ is frequently used as the critical character-

istics of a particular coating. Typical (approximate) values of these big

parameters for two typical protected coatings at about 300°K are:

a
s

Al + MgF2

Al + SiO

0.1025

0.10

0.0115

0.05

8.9

2.0
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In order to keep the surface temperatures of the HCR mirror within reasonable

bounds when irradiated by the sun, a value of a /£ lower than 2 is desired.
13 14 S

Work reported by Hass, et al ' indicates that both parameters for alumi-

num and silver can be modified by changing the nature and thickness of the

overcoat without using excessively thick coatings. For example, surfaces

with low CvO.ll to 0.12) values of a and higher (̂ 0.1 to 0.65) values of e

can be produced on aluminum. The overcoat used is a double layer of aluminum

oxide (Al 0_) and silicon dioxide (SiO ) or reactively evaporated silicon

oxide (SiO ). The oxide thickness which produces these effects varies from
A

6X/4 to 30A/4 (X = 0.55 mvO with the thicker layers giving the higher £ value.

a is essentially independent of oxide thickness, a /£ can -therefore be as
s s
low as 0.22.

If a similar overcoat is applied to silver, the resulting values of a are
s

in the range of 0.065 to 0.070 while the £ can be increased to essentially

the same values as for aluminum. The resulting a /£ can therefore be as low
s

as 0.10.

It must be recognized that these new coatings were developed for thermal con-

trol of spacecraft components and not specifically for optical mirror surfaces.

It seems reasonable to conclude, however, that similar results would be ob-

tained on HCR mirrors with modest development effort. Since both types of

coatings just described are quite desirable, they would seem ideally suited

to the HCR application. Perkin-Elmer therefore believes that values of a ,
S

£ and a /£ of 0.05, 0..10 and 0.5 are within reach.

Another parameter of the coating of importance in the HCR application is the

susceptibility of that coating to elevated temperatures and to the effects
14

of solar ultraviolet irradiation. Hass, et al , has indicated that the lat-

ter environment is of no concern. High temperature effects cannot be dis-

missed so quickly. The coatings of interest here are deposited at temperatures

less than 50°C and are subject to slight losses in reflection and possible phys-

ical degradation at temperatures approaching 200°C. Only gold is capable of

withstanding a temperature of 250°C. If such temperatures are found to be
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unvoidable in the orbiting environment, consideration of overcoated gold

would probably be appropriate.

2.4 ESTABLISHMENT OF PREFERRED HCR CONFIGURATION

In this section, the optical, mechanical and thermal aspects of the HCR design

are consolidated in order to define a preferred configuration which can be

subjected analytically to the anticipated thermal environment of the synchro-

nous orbit in Section 3 and then the resultant optical performance evaluated

in Section 4.

2.4.1 Optical Considerations

Since the HCR is fundamentally an optical device, and a high level of opera-

tional performance over a long life span is required, the optical parameters

of the device must be specified carefully. Although cost considerations must

be'kept in mind, performance achievement takes first priority for the purposes

of the present study. Perkin-Elmer therefore would prefer those HCR configu-

rations which have a high probability of achieving performance goals. From

the candidate configurations listed in Table 2-1, concept 9, the "Vrabel HCR"

is considered capable of th§ highest level of performance. It has therefore

been selected as the preferred concept.

The choice of material for the individual mirror plates of the HCR was dis-

cussed in Section 2.3. ULE and Cervit are the obvious candidates, but the

choice between them is not so obvious. For this reason, it is appropriate to

consider both materials in the thermal and optical performance analyses. If

no distinct preference can then be established, the choice would logically

be made on the basis of availability and cost of the raw material.

The optical contact technique of assembling the HCR is inherent in the~con-

cept choice. Much experience at Perkin-Elmer in contacting both Cervit and

ULE components has indicated that either can be contacted if adequately

cleaned and assembled in a controlled (i.e., clean and dry) atmosphere. In

order to maximize reliability of the optical contact joint before the HCR

reaches the space environment, the entire device should be protected from
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moisture or, if that is impossible, the edges of the contacted areas should

be covered by a small, continuous, sealant bead. From experience with various

sealants used for just this purpose, a nonrigid material must be used. Excel-

lent results have been obtained with RTV-60, a silastic which does not emit

acetic acid vapor while curing. The manufacturer (General Electric Company)

advertises this compound as not being affected by temperatures between -175"C

and +600°C. If the HCR temperature in orbit should exceed either of these

limits, tests under the more extreme conditions would be appropriate before

the sealant is made part of the design.

In order to maximize uniformity of coatings on the mirrors, reduce costs of

fixturing and masking operations, and prevent thermally induced failure of

the optical contact bonds, all coating should be done on the mirror plates

before contacting. Masking of the plates to keep coatings off the areas to

be contacted is required. In order to maximize the tolerance on positioning

each plate to its mating surface, the masked area should be about 1 mm larger

than the area to be contacted. This will result in a narrow, nonreflecting

region on each side of the dihedral interfaces between the HCR mirrors. The

six resultant radially-oriented, nonreflecting strips will then obscure a

small fraction ('v-5 percent) of the useful aperture. These radial obscura-

tions would cause symmetrical 120 degree spikes to appear in the far field

diffraction pattern produced by the HCR. This would tend to reduce the cen-

tral maximum of the diffraction pattern, but this effect is not expected to

be large. Since it is virtually unavoidable (no matter how the HCR is fabri-

cated), the small loss of energy must be tolerated.

Since surface figure errors and dihedral angle errors of the HCR each degrade

the reflected wavefront, very close tolerances should be placed on these param-

eters. Turned edges will undoubtedly occur near the edges of the mirror faces

so that the clear aperture should be defined at the point where this effect

becomes tolerable. The appropriate physical aperture increase of the HCR

from the 15.958 cm diameter minimum (which gives a projected aperture of
2

200 cm ) is 0.462 cm, resulting in a new aperture of 16.420 cm diameter.
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The surface figure tolerance should be X/20 peak to peak at X = 5.4 x 10 mm

after coating but before contacting. The dihedral angle tolerance should be

set at +0.030 arc-second so that the retroreflected beam divergence will not

exceed the diffraction limit for the corresponding HCR aperture of 15.958 cm.

To obtain this value, the diffraction limit was calculated as (1.22) (5.A x
—4

10 mm)/15.958 mm = 4.128 yrad. This is equivalent to 0.85 arc-second di-

vergence (semi-cove angle) and corresponds to equal angle errors in the HCR

of 0.85/3.26 =0.26 arc-second. The 3.26 factor was derived in Reference 2.

The 0.26 arc-second tolerance was relaxed to 0.3 arc-second because, statis-

tically, all three dihedral angles are not likely to have the same magnitudes

and algebraic signs on the same unit.

The contours of the mirror plates should all be the same and may be circular

arcs, elliptical arcs or multiple straight-line segments. From a cost view-

point, there is no clear advantage of any of these contours; from the weight

viewpoint, the elliptical contour gives minimum HCR weight for a given as-

sembly clear aperture. This contour has then been selected for use in the

preferred HCR configuration.

The thicknesses of the plates were set at 2 cm for the two side plates and

5 cm for the base plate at the recommendation of optical fabrication experts

since these thicknesses are adequate to meet the required surface figure tol-

erance and to provide adequate area for a reliable optical contact bond. The

edges and bevels of the plates should be cloth polished so that they can be

cleaned adequately before contacting the HCR assembly.

Figure 2-14 shows the tentative design for the preferred HCR configuration

to be analyzed in subsequent sections of this report. This design reflects

the various parameters discussed above.

2.4.2 Some Considerations of Mechanical Mounting and Thermal Interface

Mechanical attachment of the HCR to the satellite is an obvious requirement

for any operational system. It is not necessary that the HCR be affixed

rigidly so that it remains in a predetermined orientation because its
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Figure 2-14. Hollow Corner Reflector
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instantaneous pointing Is not as rigorous a requirement as for most optical

payloads. If the HCR moves angularly by several minutes of arc — or perhaps

even a few degrees — the retroreflected beam will, in general, return to the

earth and be usable. This allows the HCR to be held in a rather "soft" mount.

Shock and vibration effects of launch, docking, etc. would therefore be di-

minished in severity.

A typical soft mount for an optical component is obtained by constraining it

by a resilient material such as a silastic which bonds the component to a

mechanical cell or mount which, in turn, is attached to external hardware

structure. Such a mount could be designed so as to minimize mechanical dis-

tortion of the mirrors.

In the case of the HCR configuration developed under this study and described

in detail from the optical viewpoint in Section 2.4.1, a suggested mechanical

support for the optical assembly is shown in Figure 2-15. The thick base

plate of the HCR is nonrigidly attached at three points to arms which support

the assembly from a base structure. The bond between the arms and the Cervit

plate is a silastic, such as one of the RTV compounds which cures at low tem-

perature without emitting acetic acid vapor (which might damage the optical

coatings). This mounting should be able to withstand dynamic forces of the

space environment without damage to the bond if sufficient contact area is

covered at each support point.

The silastic bonds will provide conduction paths for heat flow to or from

the HCR plates, depending upon the relative temperatures of the plates and

the structure. The thermal conductivity of common silastics is relatively

high compared to the materials used in the mirror plates. By locating the

support points as far as possible from the optical surface and mounting the

HCR by its most structurally rigid component, the surface distortions re-

sulting from heat flow through the supports can probably be kept small. This

will need further consideration as part of the detailed design of a specific

mounting arrangement.
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From the detailed thermal analysis of Section 3, we assume that the rear

surfaces of the HCR plates are insulated from the satellite structure. In

general, this tends to raise the surface temperature and minimizes the gradi-

ent through the plates. If an efficient way were provided for heat to flow

from the backs of the plates into the satellite, the gradients would probably

double and the resultant surface thermal distortions, due to solar radiation,

would significantly increase.

SILASTIC

CORNER
SUPPORT ARM

SILASTIC

FRONT
SUPPORT ARM
(2 REQUIRED)

Figure 2-15. A Suggested Mechanical Interface
with the HCR Assembly
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SECTION 3

THERMAL ANALYSIS OF HCR IN GEOSYNCHRONOUS ORBIT

The thermal analysis of the HCR has been directed at solving the following

two major problems:

• The calculation of the thermal deformations of the reflecting plates

of a corner cube for a uniform unit front-to-rear surface temperature

gradient.

• The determination of the transient temperature distributions that the

HCR will attain when it is in its specified orbit.

These problems are addressed in the following paragraphs.

3.1 DEFORMATION DUE TO UNIT TEMPERATURE GRADIENT

Calculating thermal deformations requires knowledge of the dimensions, shapes

and mechanical constraints of the reflecting plates which make up the HCR, as

well as the materials from which those plates are made. For the purpose of

the present analysis, the HCR configuration shown in Figure 2-12A has been

chosen. To -the degree of approximation achieved in this analysis, the re-

sults would be essentially the same for the alternate configuration of

Figure 2-12B.

The pertinent HCR characteristics and conditions are:

a. Plates 2 cm thick are optically contacted to the edges of a 4 cm

thick plate. All plates are mutually perpendicular.

b. All plates are made of the same type material — either ULE or

Cervit.
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c. Mechanical mounting is assumed to be nondistorting; thermal flow

through the mounting is ignored.

d. Input thermal energy is assumed to enter from the front only — the

back of each plate is assumed to be insulated from the surrounding environment,

When heated more or less uniformly from the front, the HCR will tend to dis-

tort as indicated in Figure 3-1. The thinner plates (2) and (3) behave as

cantilevered plates, distorting approximately to a parabolic contour as in-

dicated in the Views AA' and BB1. Since plate (1) is mechanically constrained

along its two straight edges, its deformation pattern, indicated by the con-

trol section view of Figure 3-1, is much more complicated. The thermal defor-

mations of the cantilevered plates for unit temperature difference can be

determined from the equation:

. 1 AT T 26 = Ta TL

where

6 ° deflection at distance L from the constrained edge

0 a coefficient of thermal expansion

AT = front-to-rear temperature difference

t = plate thickness -/

For the particular case of interest here,

a = 3.0 x 10~8 in/in/°F (for ULE)

t = 2 cm = 0.787 inch

L = 4.5 inches (for elliptically contoured plate edge)

Hence, <S = 3.86 x 10 inch for AT = 1°F for the cantilevered plates.
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Figure 3-1. Thermal Distortions of a Front-Irradiated HCR
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The more complex problem of determining the deformation of the constrained
-v 4

plate for unit temperature difference has been sol-ved by using the NASTRAN,

finite element model shown in Figure 3-2 which shows an 83 element, 98 node

model of a quarter of a circular plate. The radius is 5.5 inches and the

plate thickness 2 or 4 cm. To simulate contact at the dihedral edges with

the other plates, the deflections perpendicular to the plate (i.e., in the

Z direction) are constrained along each edge for a distance of 3.85 inches.

(The contour of the free edge of the plate is immaterial.) Essentially, the

same bending results are obtained for the circular arc shown in Figure 3-2

or for the elliptical contour of Figure 2-12A since the distance from the

90 degree corner to the midpoint on the free edge is constant for both

configurations.

TABLE 3-1

MATERIAL PROPERTIES OF ULE USED IN ANALYSES

6 2
Young's Modulus 9.8 x 10 Lb-Force/In

—8
Coefficient of Thermal Expansion 3.0 x 10 In/In/°F

Poisson's Ratio 0.17

6 2
Shear Modulus 4.3 x 10 Lb-Force/In

Density 138.1 'Lb-Mass/Ft3

Specific Heat 0.190 Btu/Lb-Mass-°R

Thermal Conductivity 0.77 Btu/Hr-Ft-°R

Thermal Diffusivity 2.93 x 10~2 Ft2/Hr

The plate is assumed to be made of ULE with the material properties given in

Table 3-1. A 1.0°F front-to-rear linear temperature gradient was imposed on

each element and the deflections determined. The results of the analysis are

shown in Figures 3-3 and 3-4. Figure 3-3 shows lines of constant Z displace-

ment, while Figure 3-4 shows the variation in Z displacement with radius along

the centerline of the plate. It may be seen from these figures that the
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Figure 3-3. Results of Constrained-Plate NASTRAN Analysis:
lines of constant deflection in Z direction
(perpendicular to plate) for a 1°F front-to-
rear temperature difference
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Figure 3-4. Results of Constrained-Plate NASTRAN Analysis:
deflection in minus Z direction along center
line of plate as a function of distance from
90° corner
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maximum displacement of a constrained 4 cm thick plate is about 1.0 x 10

inches for the imposed 1.0°F temperature gradient. A similar analysis for

a 2 cm thick plate yielded a maximum deflection of 1.0 x 10 inches for the

same temperature difference. How this information may be used to estimate

the distortions of the actual HCR is explained in Section 3-2, giving due

consideration to the expected temperature differences in orbit.

3.2 INPUT THERMAL FLUX RECEIVED DURING ORBIT

The determination of the actual temperature distribution that the HCR will

achieve in orbit is made difficult by the complexity of the boundary condi-

tions. A precise solution to this problem requires a long running time on

the computer because it involves a 24 hour transient cycle. Since the maxi-

mum plate deflection for a unit temperature difference is small, an approxi-

mate solution to the problem is adequate if the actual front-to-rear tempera-

ture difference is sufficiently small. To determine if this can be expected,

a simplified solution to the problem was attempted first. The model chosen

was a uniform, unshielded, flat plate which orbits earth in a 3=0, syn- .

chronous orbit. The energy input to the plate consists of the incident

earthshine, albedo, and solar fluxes multiplied by-the appropriate spectral

absorptivities. For this portion of the study, the values used for a (solars
absorptivity) and £ (infrared emissivity) were 0.1 and 0.05, respectively.

The calculated incident solar and albedo fluxes are shown in Figure 3-5 as a

function of angular position. To simplify the problem, edge effects were

neglected and the heat transfer was assumed to be strictly one-dimensional

(through the plate). It was also assumed that the rear of the mirror was

insulated.

The first model generated was a 2 cm thick mirror of ULE and had 22 nodes

through the thickness of the plate. This required too much computer time to

analyze, so a simpler, seven-node model was generated. An additional seven-

node model of a 4 cm thick plate was generated and both models were run for

three orbits. Figure 3-6 shows the seven-node model in schematic form.
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UNIFORMLY ABSORBED FLUX

2 cm
or 4 cm

FRONT SURFACE - A ZERO MASS NODE

NODES
2 - 7
ARE

EQUALLY
SPACED

INSULATED REAR SURFACE

Figure 3-6. Schematic of 7-Node Model used to Estimate
Temperature Gradients Through the HCR Plates
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Three orbits did not allow enough time to give steady orbital temperatures,

but the front-to-rear temperature differences did not change significantly

with orbit number and thus are believed to be reasonably accurate. The

calculations showed maximum front-to-rear temperature differences of 1.39°F

and 2.67°F for the 2 and 4 cm plates, respectively. The corresponding orbi-

tal variations in spatial mean temperatures are approximately 45°F and 85°F

while the orbital mean temperatures are about 610°R (66°C). This temperature

may be reduced by a proper choice of a /£ since, on a mean orbital basis,
s

or - -r (s + A) + E

where

T =» absolute temperature

a = Stephen-Boltzman constant

s = solar absorptivity

£ = infrared emissivity

S = mean solar flux

A = mean albedo flux

E = mean earthshine flux

4 — 4
In general, T f (T) but, if it is assumed that the equality holds, then a

value of cc /£ = 1.0 will yield T~ = 515°R (10°C) which would be a more desir-
S

able value.

The 2.67°F front-to-rear temperature difference yields a maximum deflection

of about 2.67 x 10~ inches in the 4 cm thick plate. Essentially, the same

result is obtained for the 2 cm plate with a 1.39°F front-to-rear AT since

the gradient changes by the same ratio as the deflection.
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For visible light (X = 0.54 ym), this corresponds to X/80 so, to this ap-

proximation, the thermal deformation would not seem to be a serious limita-

tion on the performance of a single mirror in orbit. This is shown below to

be the case also for a three mirror HCR.

As a reasonable approximation of the actual situation of interest to NASA,

the total flux absorbed by the plates of a three-dimensional HCR was calcu-

lated. The ray geometry is shown in Figure 3-7. The coordinate axes lie

along the intersections of the surfaces. It is assumed for the moment that

the faces of the cube are infinite in extent and that the cube is filled with

collimated light whose direction is defined by the angles 6 and <J> shown in

Figure 3-7. The energy absorbed at every point is comprised of the following

components: energy which is directly incident upon the point; energy which

has been reflected from one other surface (two possible paths); and energy

which has been reflected from two other surfaces.

If it is assumed that the absorptivities of the surfaces are equal and are

independent of angle of incidence, then the total energy absorbed at the

point "A" is the sum of the four components shown below:

Component Energy Absorbed

Directly incident ray I a dA^

Two rays having one
previous reflection o s s b

One ray having two r ( 2
previous reflections o s s o___

Total Energy Absorbed 41 a (1-a + s )dÂ
4

where

a = surface absorptivity
S

I = flux in incoming beam
o

dA, = cross section of beamiAb
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Since the irradiated area, dA, of the surface on the X-Y plane is given by

dA = dA,/cos <(>,

the flux absorbed by any area on the X-Y plane is given by

a 2I = 41 a (1-a + s ) cos <j>x-y os s —T— r

By appropriate application of the trigonometric functions of 6 and <f>, the

flux absorbed on the YZ and XZ planes can be computed.

There are three special cases of HCR irradiation during the orbit which are

of interest. These are:

a. Beam normal to one face

b. Beam symmetrically incident on two faces

c. Beam symmetrically incident on three faces

During the half-orbit in which sunlight enters the HCR (see Figure 3-8),

Case "a" occurs at about y = 215°, Case "c" occurs in the vicinity of the

earth's shadow at y = 261° and 279°, while Case "b" occurs at about y = 325°.

Between these points in the orbit, all three faces are irradiated more or

less uniformly, depending upon the HCR's aspect to the incoming sunlight.

The^reTatidnships shown in Table 3-2 indicate that in Case "b", when two

surfaces with a =0.1 are irradiated symmetrically, each surface absorbs
S

34 percent more sunlight than if one surface is normal to the beam (Case "a")

Similarly, the Case "c" condition allows 108 percent more energy to be ab-

sorbed than in the Case "a" condition. The energy absorbed by the HCR is

thus somewhat dependent upon its orientation. In order to be sure of a

conservative estimate of thermal effects, the expression for" the worse-case

irradiation of all three mirrors was considered to apply at all points in

the orbit. This expression was used for albedo and earthshine, as well as

solar inputs, even though the former fluxes are not collimated. No correc-

tion was applied to account for the finite extent of the mirrors despite the

fact that this would reduce the flux on some areas of the HCR surfaces.
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Figure 3-8. Typical Geometry for HCR in Synchronous Orbit

3-15



ER-275

TABLE 3-2

THREE SPECIAL CASES OF HCR IRRADIATION

CASE I
BEAM NORMAL
TO ONE FACE

Y = 0°
Cos Y = 1

1^ = I0o Cos Y

I. - I o
J. 0

CASE II
BEAM SYMMETRICALLY
INCIDENT ON TWO FACES

Y = 45°
Cos Y = 0.707

I. - I oCos Y
1

+ I0a (l-a)cos Y

I2 = 0.707I0a '(2-a)

CASE III
BEAM SYMMETRICALLY
INCIDENT ON THREE

Y = 54.73°
Cos Y = 0.577

I- - 4I0a(l-a+ —
J 4

I3 = 2.308I0a (1-a

FACES

) cos Y

Q2

4~

For dg = 0.1

ii - o.i i. I2 - (0.7071.) (0.1) (2-0.1)

» 0.134I8

= 1.34̂

I3 = C2.308I.X0.1X1-0.1+

O.Olx
4

• 0.208I0

- 2.08̂

For as = 0.08

Ix - 0.08 I, I2 - (0.707I0)(0.08)(2-0.08)

- 0.1081.
» 1.361

I3 - (2.3081
(1-0.08

= 0.170Io
= 2.121-ĵ

0)(0.08)
+ 0.0064 )

4

For 0.05

0.051, I2 = (0.707I0)(0.05)(2-0.05)

0.068Ie

1.381,

= (2.308I»)(0.05)
(1-0.05 + 0.0025 )

4
- 0.1101.
= 2.191,
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The incident solar, earthshine. ̂rid albedo flux distributions across the three

faces of the cube were next calculated as a function of HCR orbital position.

An arbitrary, but fixed, orientation (rotation) of the HCR about its axis of

symmetry (passing through the earth's center) was assumed. This orientation

differs slightly from that shown in Figure 3-8. The calculated fluxes were

multiplied by the factor derived above and used as input (absorbed) fluxes

to the seven-node mirror thermal conduction model shown in Figure 3-6. The

temperatures at the hottest points on the mirror reflecting surfaces and the

corresponding temperature gradients through the mirror thickness were computed.

Conduction through the plate was considered, but lateral flow from one point

to the next was ignored in this thermal model. Figures 3-9A through 3-9H show

the incident solar fluxes while Table 3-3 shows the extremes of those tempera-

tures and the gradients, AT . The three types of coatings listed in the

left column of the table have the a and £ characteristics listed in the next
s

two columns. -These represent standard aluminum plus SiOv, a special high

emissivity coating chai

special coating with a

emissivity coating characterized as silver plus thick SiO and a compromise

£ = 0.08 which lies between these two extremes.

TABLE 3-3

CALCULATED WORST CASE HCR MIRROR TEMPERATURES

Coating
Type

1

2

3

as

0.1

0.05

0.08

e

0.05

0.10

0.08

AT <»max
°F (°C)

4.56
(2.53)

2.45
(1.36)

3.76
(2.09)

(2)
Temperature in 3rd Cycle x

Minimum
°F (?C)

197
(90)

34
( 1)

100
(38)

Maximum
°F (°C)

462
(239)

176
(80)

317-
(159)

Mean
°F (°C)

311
(155)

96
(36)

194
(90)

(1) Maximum front-to-rear temperature difference for 2 cm thick plate.

(2) Based on properties of ULE. v
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Table 3-4 lists the extreme surface deformations which would be expected

to result from the AT values listed in Table 3-3. For ULE, the constrained
max

4 cm thick mirror deflections were obtained by multiplying the 1.0 x 10

inches per °F AT from the NASTRAN analysis described earlier by twice the ap-

propriate AT for 2 cm thickness from Table 3-2. The deflections for Cervit

were obtained from those for ULE by multiplying by the ratio of coefficients

of thermal expansion (1 x 10 /0.3 x 10 ) and dividing by the ratio of thermal
-2 -2

diffusivities (3.1 x 10 /2.9 x 10 ). The results for Cervit are, therefore,

3.1 times those for ULE.

For the cantilevered plates, the deflections were calculated by multiplying

the 3.86 x 10 inches per °F AT by the appropriate value of AT for ULE.

This value was then multiplied by 3.1 to give the corresponding values for

Cervit.

TABLE 3-4

CALCULATED WORST CASE DEPARTURE FROM PLANE OF HCR MIRRORS

Coating
Type*

1

2

3

ULE Mirrors
Cantilevered

(Um)

4.5 x 10~2

(A/12)
See Note

2.4 x 10~2

(A/22)

3.7 x 10~2

(A/15)

Constrained
(ym)

2.3 x 10~2

(A/23)

1.2 x 10~2

(A/45)

1.9 x 10~2

(A/28)

Cervit Mirrors
Cantilevered

(ym)

1.4 x 10"1

(A/4)

7.4 x 10"2

(A/7)

1.1 x 10"1

(A/5)

Constrained
(ym)

7.1 x 10~2

(A/8)

3.7 x 10"2

(A/15)

5.9 x 10"2

(A/9)

Types defined in Table 3-3.

Note: Sag of Surface expressed in wavelengths for A = 0.54 ym.

3-22



ER-275

When expressed in wavelengths of visible light, the HCR surface deformations

start to have meaning in an optical sense. The numbers in parentheses in

Table 3-4 provide this data and represent the maximum sags of the surfaces

from the nominal planes. The sags of points on the surfaces closer to the

surface intersections are progressively smaller, so the RMS departure from

the plane is smaller than the peak values listed. Since each light ray from

the earth will intercept all three HCR surfaces before it returns to the earth,

the combined effects of all three surfaces must be considered. This topic is

discussed in Section 4 of this report.

3.3 TEMPERATURE PROFILE ANALYSIS

The analyses discussed above considered the feasibility of the HCR application

within the time and money constraints of the contract. They did not, however,

provide a detailed prediction of the transient temperature distribution within

the plates after steady orbital conditions had been reached. Such a determina-

tion would require a larger expenditure of computer funds than was available

for the project. A method of analysis that would be used 'to obtain the tem-

perature profiles was outlined, however, and it is described in Appendix C

since it contains several interesting features. The method is based on use

of a 58 node computer model. The more detailed thermal analysis recommended

in Section 5 would use this model.

3.4 LITERATURE SEARCH

/

While the nature of this study did not require that a thorough literature

search should be made for references pertinent to the thermal analysis of

HCR's, Reference 15 was found and it deserves comments. That prior report

was concerned with the design of corner cubes to be used on the lunar surface

and contains a section on the calculation of the transient temperature of a

HCR. The prior analysis differed from the present analysis in that it assumed

that the HCR was oriented so that the incoming sunlight was parallel to one of

the faces; thus, the maximum incident energy flux was (2 - a) S cos6 instead

of the 4 [1 - a + (â /4)]S cos 6 derived in the present analysis (S is the

solar constant). It was not noted that this factor only applies for an infinite
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cube and no attempt was made to derive the correct fluxes for the finite cube.

For the calculation of the temperature distribution in the corner cube, the

analysis in Reference 15 assumed that each face was an isothermal node and that

equilibrium conditions occurred at all times. These assumptions are appropri-

ate to that analysis' based on the length of the lunar day. The assumptions,

however, are not valid at dusk or dawn, and they do not permit the calculation

of thermal distortions. This was noted in the report, and it was pointed out

that thermal deformations at lunar dusk and dawn would cause an HCR to deform

excessively at these times. The prior report, therefore, does not provide any

basis for analysis of the orbiting HCR of interest in the present study.
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SECTION 4

OPTICAL EFECTS OF THERMAL DISTORTIONS

The geometrical deformations of a thermally irradiated HCR in a geosynchronous

orbit are discussed in Section 3. The worst case changes in mirror shape from

the nominal planes are best described by reference to Figure 3-1 and Table 3-4

which show the nature and conservative estimates of the magnitudes, respec-

tively, of the surface distortions. In this analysis, the corresponding de-

formation of a plane input wave, when retroreflected by the HCR, is calculated

and then the effects upon the far field diffraction pattern are estimated.

As the first step of this computation, the geometric shapes of the mirrors

were expressed mathematically for ray tracing. The two cantilevered surfaces

were designated as parabolic toric cylinders while the constrained surface was

designated as a generalized aspheric of the form:

CY2

+ AY* + BY6 + CY8 4- DY10

- EC2Y2

Because the calculations of the precise deformations to be expected of the

surfaces in orbit had not yet been completed at the time that the computer

facilities and the services of a qualified optical designer were available

to this project, the inputs to the ray traces were estimated in terms of the

maximum surface sags from the respective planes for the following two hypo-

thetical cases:

Case 1 Case 2

Sags of Cantilevered Surfaces A/10 A/4

Sags of Constrained Surface A/25 A/10

The surface has a contour which is shown in Figure 3-4 of Section 3.
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Where X was the wavelength of green light, 0.54 jam. The corresponding values

of the constants for the mathematical expressions for the surfaces were then:

Case 1 Case 2

Toric Curvature (reciprocal
radius in mm) -5.124 x 10 -1.28 x 10

Aspheric Eccentricity "E" 1.0 1.0

Aspheric Curvature "C" 0 0

Aspheric Coefficient "A" 0 0

Aspheric Coefficient "B" -3.3515 x 10"18 -8.3788 x 10"18

Aspheric Coefficient "C" -3.4632 x 10"22 -8.6580 x 10~22

Aspheric Coefficient "D" 1.9464 x 10~26 4.8660 x 10~26

The ray trace program was then instructed to arrange the surfaces at the ap-

propriate angles to the input optical axis which was also the axis of symmetry

of the HCR. The paths of 156 rays, arranged in the form of a 19 x 19 square

grid and lying within one-half the circular aperture of the HCR, were then

traced through the three reflections and the optical path differences (OPD's)

of each ray from a plane wavefront exiting the HCR aperture were computed.

Tables 4-1 and 4-2 list these OPD's for the two hypothetical distorted HCR

cases. The columns of interest are the ray number, "the "Y" and "Z" coordinates

of the entering rays (where the axes and point numbering system are defined as

indicated in Figure 4-1) and the OPD's which are expressed in mm. The OPD's

for all 293 rays entering the full circular aperture may be derived from the

156 rays shown since all but the 19 rays crossing the aperture in the Z = 0

meridian are duplicated in the minus Z-direction.

Figures 4-2A and 4-2B show the values of the OPD's in wavelengths of green

light for the lower right quadrants of the apertures of the two HCR cases.

Analysis of the data of Tables 4-1 and 4-2 indicates that the wavefront pro-

files across any diameter of either HCR aperture are symmetrical with respect

to the axis of symmetry. The shape of each reflected wavefront is generally
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-6.50*680-08
-9.000000 00
-7.711400-06
-9.00000O 00

1
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

O.U

0.0

0.0

0.0

O.U

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

O.U

0.0

0.0

0.0

O.U

0.0

0.0

OEL

(31)

OPO
-8.140270-05

-6.349140-05

-4.440180-05

-2.96S>690-05

-1.920000-03

-1.160370-05

-6.520370-06

-2.880340-06

-7.191150-07

0.0

-7.191150-07

-2.860340-06

-6.520370-06

-1.180370-05

-1.940000-05

-4.965690-05

-4.440180-05

-6.349150-05

-8.140260-05

-3.162750-Ob

-6.391360-05

-4.481140-05

-3.000300-05

-1.949200-05

-1.206390-05

-6.766460-06

-3.121450-06

-9.591J90-07

-2.400240-07

-9.591490-07

-3.121430-06

-6.7662bO-06

-1.206390-05

-1.949200-05

-3.000310-05

4-3



TABLE 4-1 (Continued) ER-275

36

it

J1

J9

40

»1

42

43

44

45

• 6

47

4H

44

40

bl

b2
•53

•J4

b5

b6

57

bfl

39

00

61

62

t>3

64

05

66

67

68

69

10

71

12

73

/»

75

76

1

1

3

3

1

3

J

3

3

3

3

3

3

3

3

3

3

3

1

3

3

i

3

3

3

3

3

3

3

3

T

3

3

3

3

3

3

3

3

3

3

- ..7*

-...d»

-U.^b

u.99

0.04

U.74

0.63

O.b3

•1.42

0.32

0.21

o.ll

0.0

-0.11

-0.21

-0.32

-u.42

• '1.53

-1.63

-0.74

-O.U4

-0.9b

0.9b

0.84

0.74

0.63

0.5J

0.42

U.32

0.21

0.11

0.0

-0.11

-0.21

-0.32

-H. 42

-0.&3

-11.63

-0.74

-0.84

-0.95

0.11

ii.ll

ii. 11

0.21

0.21

0.21

0.21

11.21

0.21

0.21

0.21

0.21

O.ll

0.21

0.21

0.21

0.21

0.21

U./l

0.21

0.21

0.21

0.32

O.J2

O.J«i

0.32

0.32

0.32

0.32

0.32

0.32

O.J2

0.32

0.32

0.32

0.32

1.32

O.J2

0.32

0.32

0.32

l.-M201f'-06
s.j»onOt( 01
2.24b710-u6
7.200000 01
1. J25290-06
1. 09999D 01
-1.187490-00
-9.100010 01
-2.224980-06
-7.199S.90 01
-1.929230-U6
-is. 300000 01
-1.407*30-06
-5.400000 01
-9.890460-07
-4.SOOOOO 01
-7.01676U-07
-3.60000U 01
-4.94600U-07
-2.700000 01
-3.220480-07
-l.HOOOOD 01
-1.600200-07
-H. 999990 00
-2.400B60-14
-7.814720-06
1.600200-07
«. 999980 00
3.220480-07
l.MOOOOO 01
4.946000-07
2.699990 01
7.016760-07
3.600000 01
9.89044U-07
4.SOOOOU 01
1. 407430-06
5. 400000 01
1.929220-00
6.300000 01
2.224990-06
7.200000 01
1.187560-06
». 099990 01
-9.371570-07
-a.iooolo 01
-2.1H1060-06
-7.200000 01
-1.954840-06
-6.300000 01
-1.442770-06
-S. 400000 01
-1.014490-06
-4.500000 01
-7.154130-07
-3.600010 01
-5.004520-07
-2.700000 01
-3.239740-07
-1.800000 01
-I.»>04<i90-07
-9.000000 00
-5.620500-14
-1.4266*0-05
1.604690-07
fl. 999970 00
3.239740-07
1.400000 01
5.004520-07
2.69999Q 01
7.1b4l30-07
3.600000 01
1.014490-06
4.500000 01
1.442760-06
5.400000 01
1.954840-06
6.300000 01
2.181U70-06
7.200000 01
9.372430-0?
8.099980 01

-V. 1 1 TOw-oa
->-.uOnuOu Ou
-v. J69010-OB
-•v.iiOOOlO OU
-».9l\jlOO-Ott
-<<.oonoou ou
-rt.s07t>«JU-Ob
-l.lOOOOU 01
-1.H5602U-07
-1. -.00000 01
-1.H3981U-07
-l.aOOOOl) 01
-1. -565890-0 7
-l.nOnuou 01
-1.3204«0-07
-l.^OOOOU 01
-1.171010-0/
-1.800000 01
-1.1U0570-07
-1.30000U 01
-1.074920-07
-l.xOOOOO 01
-1.068220-07
-1.^00000 01
-1.H67230-07
-i.aoooou 01
-1.06M220-07
-l.HOOOOU 01
-1.074930-07
-1.^00000 01
-1.100bUU-07
-1.800001) 01
-1.17J02U-07
-l.AOnOOU 01
-1. J«!049U-Of
-l.nOOOOU 01
-1.36i>VOO-07
-l.MOOOOO 01
-1.839tt2U-07
-l.HOOOOU 01
-l.fl5fr6bL)-07
-l.HOOOOU 01
-S.aOSblJ-Od
-l.MOOOOU 01
-1.043660-07
-2.70000U 01
-<>. 729950-07
-<».6999~90 01-.
-/>.79(SJ50-07
-2.69999U 01
-f. 407810-07
-2.699990 01
-2. 031670-07
-2.700001) 01
-1.790V1U-07
-2.700000 01
-l.«>70390-07
-2.70000U 01
-1.622020-07
-2.700000 01
-1.606830-07
-2.700000 01
-1.603820-07
-2.700000 01
-1.606830-07
-2.700000 01 •
-1.622030-07
-2./00000 01
-1. 67Q400-07
-2.700000 01
-1.790*20-07
-2.700000 01
-2.031680-07
-2.700000 01
-2.407820-07
-2.700000 01
-,>.79«,370-07
-2.700000 01
-2.729990-07
-2. 700001) 01
-1.04?770-07
-?. /OOOOU 01

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

~~o.o-

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0 (32)
0.0

0.0

-4.481150-05

-6.391370-05

-8.162740-05

-8.285700-05

-6.517290-05

-4.604780-05

-3.105210-Ob

-2.0376/0-05

-1.285000-05

-7.506830-06

-3.846000-06

-1.679210-06

-9.600970-07

-1.679210-06

-3.846000-06

-7.506030-06

-1.285000-05

-2.037670-05

-3.105210-Ob

-4.604790-05

-6.517300-05

-6.225680-05

-A.314b30-0b

-6.724190-05

-4.81 3170-05

-3.283580-05

-2.188120-Ob

-1.418010-05

-8.7b2090-06

-5.058720-06

-2.883220-06

-2.160220-06

-2.88J220-06

-b. 058720-06

-8. 752080-06

-1.418010-Ob

-2.188120-05

-3.283580-Ob

-4.813180-05

-6.724̂ 00-05

-8.314520-Ob
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tl

IA

14

BO

01

od

03

e*

09

06

07

08

09

90

91

92

93

9*

99

96

97

9(J

99

100

101

10,>

103

10*

lot

106

10?

104

199

no
111

112

in

11*
u*
11^
iir

3

)

3

i

3

3

3

3

3

3

3

•}

3

3

3

3

3

3

3

3

3

3

3

1

1

3

3

3

3

3

3

T

3

3

T

3

3

3

3

3

3

11.0*

ii. 7»

.«>J

0.53

0.*2

n.32

0.21

0.11

0.0

-0.1 1

-0.21

-0.3*

-o.*2

-0.53

-0.63

-0.7*

-0.0*

0.0*

0.7*

0.6J

0.33

l>.*2

0.32

0.21

0.11

U.O

-0.11

-0.21
~

-O.J2

-0.»2

-0.53

-0.63

-0.7*

-0.0*

0.74

0.6J

11.53

.•.*<;

II. Jd

ii.21

•J.ll

n.»2

o.k«r

1.42

d.» 2

'!.»<?

o.*2

0.*2

0.*2

0.»2

ri.*2

0.*2

0.42

0.*2

0.*2

U.4<£

0.42

o.*2

0.5J

0.5J

O.iJ

0.5J

O.SJ

O.iJ

0.->J

O.b3

0.5J

0.5>3

0.53

0.53

n.Sj

0.53

0.5J

0.53

O.aJ

0.6J

U.6J

0.63

0.6J

ii. 6J

fl.t>3

0.')3

-2.li)H<;3i)-Ob
- / . ^OOOOu 01
-1.9h3«;3n-06
-S.30000D 01
-l.491-»3l»-()b
-3.400000 01
-1.05<i01l)-06
-«.boOOOO 01
-7.309*10-07
-3.000010 01
-5.10*200-07
-2.70000U 01
-3.2773bO-07
-1.40000U 01
-1.615670-07
-•j.nonolo oo
-1.0*2000-13
-2.2*27BO-05

1. 615670-07
4.499960 00
3.277360-07
1.799*90 01
5.10*200-07
2.699990 01
7.369*00-07
3.600001} 01
1.052010-06
*. 500000 01
1.491550-06
5.«OOOOQ 01
1.903230-06
6.300000 01
2.098270-06
7.200000 01

-1.951180-06
-7.?OOOOD 01
-2.00*3*0-06
-6.300000 01
-1.5S16*0-06
-5.400000 01
-1.102820-06
-*. 500000 01
-7. 683320-07
-3.600010 01
-5.263110-07
-2.700000 01
-3.3*517[|-«7
-l.iOOOOl) 01
-1.638720-07
-4.000020 00
-1.710300-13
-J. 2312*0-05
I.b387l0-07
4.999950 00
3.3*5170-07
1.799990 01
5.263100-07
2.b9*990 01
7.683310-07
3.600000 01
1.102820-06
*. 500000 01
1.551630-06
5.40000U 01
2.00*3*0-06
6.30000U 01
1.951200-06
7.200000 01

-2.0012*0-06
-6.300000 01
-1.617060-06
-5.400000 01
-1.16722U-06
-4.500010 01
-fl. 117*10-07
-3.600010 01
-5.503*50-07
-2.700000 01
-3.*59050-07
-1.400000 01
-1.681720-07
-9.0000JO 00

-3.101 75u-U/
-J. iOOOOu ol
-I. 78<;&2U-U/
-3.60000U ul
-3. 11"90J-07
-5 .60QOOU 01
-2.M0910U-07
-3,-iOOOOU Ol
-?.*5974U-07
-3.nOOOOU 01
-?.2M56U-07
-J.^OOOOU 01
-?.ia7B20-07
-3.nOOOOl> 01
-?.13710U-07
-3.«>OfiOOO 01
-2.149090-07
-3.bOOOOU 01
-2.157110-07
-3.oOf)OOU 01
-2.1S782U-07
-3.60QOOU 01
-2.27156U-07
-3.60000U 01
-2.*397*0-07
-3.60000U 01
-2.B09110-07
-3.60000U 01
-3.31899U-07
-3.AOOOOU 01
-3.7826*U-07
-3.IS0001U 01
-3.S0181U-07
-3,*0001u 01
-*.07036U-07
-*.50noou ol
-*.77S60U-07
-4.90000D 01
-*.31S8*U-07
-4.50000U 01
-1.10097U-07
-•l.bOOOOU 01
-1.20-^6*U-07
-».50000u 01
-?.9<i78*u-0/
-*.5onoou 01
-«f.79136U-07
-4.50000i< 01
-«;.7j4a*j-u7
-4.500000 01
-2.720080-07
-*. 500000 01
-2.73*8*0-07
-4.50QOOO 01
-2.791360-07
-4.500000 01
-2.927850-07
-«.500000 01
-1.205650-07
-*. 500000 01
-^. 680980-07
-*. 500000 01
-4.31S850-07
-4.500000 01
-4.778620-07
-4.SOnuOu 01
-». 070*50-07
-*. 500000 01
-5.725*30-07
-5.400000 01
-S. 400050-07
-5.400000 01
-4.6/508O-07
-5.«OOOOO 01
-*.U6410L(-07
-s.oonooo ol
-3.673050-07
-5.4UnOOO 01
-3.4636bO-u7
-S.40QOOO 01
-3.367910-07
-S.4UOOOO 01

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
/•SIX

o.o (33)

0.0

0.0

-7.005690-05

-5.1090*0-05

-3.5*0/00-05

-2.405J60-05

-1.600030-05

-1.052<-90-05

-6.771190-00

-4.575600-06

-3.8*9880-06

-*. 575680-06

-6.771180-06

-1.052290-05

-1.608830-05

-2,*05350-OS

-3.5*0700-05

-5.109030-05

-7.005090-05

-7.3*8500-05

-5.*9*380-05

-3.883590-05

-2.696590-05

-1.863U70-05

-1.283730-05

-9. 008010-06

-6.77*1*0-06

-6.038750-06

-6.77*1*0-06

-9.008000-06

-1.285730-05

-1.863060-05

-2.6.96590-05

-3.883580-05

-5. *9* 380-05

-7.3*0500-05

-5.967780-05

-4.320200-05

-3.071610-05

-2.189*20-05

-1.581980-05

-1.181610-05

-9.51*030-06
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11*

11-J

I2a«

121

U2

UJ

U»

123

U6

127

It*

129

UO

Ul

U2

13J

1J4

us

1J6

137

138

134

140

141

142

143

14*

!»•»

140

147

144

14*

150

l3l

132

Ib3

Ib4

133

1-56

3

3

^ >
3

J

3

3

1

3

3

3

3

3

1

3

'3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

3

3

3

3

3

3

i

3

». vi

-.'.11

-o.2l

-,..32

-u.*2

-U.33

-i). e3

-0.74

0.63

P. 53

0.42

0.32

0.21

0.11

0.0

-0.11

-0.21

-0.32

-0.»2

-O.i>3

-0.63

0.53

0.42

0.32

0.21

0.11

0.0

-0.11

-».21

•0.32

-0.42

-O.b3

0.32

0.21

D.U

0.0

-0.11

-0.21

-O.J2

U.6J

O.oJ

il.*J

i).f>3

0.63

J.6J

0.6J

U.63

0.7*

0.74

0.74

0.74

0.74

0. 74

0.74

0.74

0.7*

0.74

0.7*

0.74

0.74

0.84

0.64

U.4J4

O.d4

O.H4

O.H4

O.b4

U.B4

0.&4

O.d4

0.84

0.9i>

0.9b

O.Vi

0."»5

O.^b

0.^3

O.V3

-'.63»ndn-l J
-4. )V6l7li-03

l.»81/lu-07
•<.><>»<J-»4n uo
j.^ssiosri-o?
1. ̂ 9'*'»ii 01
3.i>03»4,)-o7
£.>>*SisS<u III
".1171SIO-U7
1.-)UOOOC 01
l.lb'*lO-00
i.^OOOOL- 01
1 .61 7o«>0-U6
3.»OOOOU Ul
2.00124U-06
b.jOOOOu 01

-1.679740-00
-•3.400000 01
-1. 243210-06
-4.30001U 01
-•1. 686630-07
-3.000010 01
-3,«40'<:20-07
-2.70000n 01
-3.^.37700-07
-l.rtOOUUO 01
-1.7S4bao-07
-v. 000040 UO
-4.02131(5-13
-S.74de50-0b

1.7b4370-07
S. 994930 00
3.6J7690-07
1.749990 01
5.848200-07
2.099990 01
d. 686620-07
3.10000D 01
1.243<;10-06
4.300001) 01
1.679/40-06
S. 400000 01

-1.324J90-06
-4.500010 01
-4.386660-07
-3.600010 01
-•>. 3141 70-07
-2.700000 01
-3.899<fOO-07
-l.<400000 01
-1.86740U-07
-•4.Q0006t) 00
-6..,-ieb40-13
- '. JUl'*7''i-03

l.H6'»4u-07

H.94V410 00
J. 899180-07
1.799990 01
6.314150-07
2.6999VO 01
9. J86610-07
3.100UOO 01
1.324J8D-06
4.500000 01

-6.899*30-07
-2.700000 01
-4,^b4<rlO-07
-1.000010 01
-2.029V80-07
-9.000080 00
-9.09b500-13
-9. 010360-03

2.029»»6i)-07
1.499400 00
».2b4180-0/
1. /4V>»4u Ul
6.rtV9j4i;-07
2.»i4999^ 01

- 1.34J10U-07
-S . *OOOOL» Ul
- (.36791u»-07
-^.400000 Ul
- J. 463660-07
-3.40000U 01

- J.07386U-0/
-i.ttOOOOD 01
-4.06<»Uu-u7
-•j.ftOnOOu 01
-4.6710^0-07
-•j .wOOOOO 01
-S.»0006O-07
— ->.*onoou 01
-4./2547U-07
-b. 400001) 01
-*>. 541020-07
-6.30000U 01
-5.409380-07
-i.30nOOu 01
-^.073450-07
-o.jOOOOU 01
-4.Sb4670-07
-^.300000 01
-4.249630-07
-'I.30000U 01
-4.09<J47U-07
-i.JOOOOO 01
-4.0b525L»-0/
-6.30UUOU 01
-4.049470-07
-••.300000 01
-4.349640-07
-»>.30oOOU 01
-4.S5467U-U7
-6.300000 01
-S. 073950-07
-A.30000U 01
-S. 809380-07
-6.30000U 01
-ft. b4 1 040-0 7
-6.300000 01
-7. 072790-07
-7.20QOOU 01
-6.26608U-07
-7.200000 01
-5.620060-07
-7.20000L) 01
-3.20b850-07
-7.200000 01
-4.4B769U-07
-'.200000 01
-4.420860-07
-7.200000 01
-4.987690-07
-T. 200000 01
-5.2U3850-07
-7.200000 01
-3.620070-07
-7.200000 01
-ft. 266090-07
-7.200000 01
-7.07?800-07
-7.200000 01
-A.4UH600-07
-A. 100000 01
-6.J69790-0/
-M. 100000 01
-*..09B020-U7
-4.10(1000 01
-0.005450-07
-8.100000 01
-6.09(1020-07
-A. 100000 Ul
-6. J89800-07
-rt.10.1UOU 01
-6.40800O-07
-4.10000U 01

0.0

0.0
*

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.o

0.0

o.u

0.0

o.u

0.0

0.0

0.0

0.0

0.0

0.0

o.u

0.0

0.0

-8.761110-06

-4.514820-06

-l.ldlolO-03

-1.5$l4BO-OS

-2.189«:lj-0a

-3.071000-05

-4.320^00-05

-b. 967780-05

-4.8b7360-05

-3.542J4Q-Ob

-2.599150-05

-1.951070-05

-1.527660-05

-1.286b80-0b

-1.208050-05

-1.286570-05

-1.527660-05

-1.951060-Ob

-2.599150-05

-3.542330-05

-4.857J50-05

-4.121230-05

-3.108020-05

-2.407370-05

-1.951650-Ob

-1.694U80-05

-1.610390-05

-1.694080-03

-1.9bl6bO-05

-2.407j60-0b

-3.108020-05

-4.121220-05

-2.969410-03

-2.471360-Ob

-2.19J030-Ob

-2. 100300-05

-2.191030-05

(34) -2.471b60-0b

-2.9694ln-0b
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TABLE 4-2

RAY TRACE PRINTOUT OF THERMALLY DISTORTED HCR - HYPOTHETICAL CASE 2

LUlf

C»G «
COLO-

1
MAY 1
10

HAY (
1

2

3

*

b

•>

r

<t
•i

10

11

12

13

14

lb

16

ir
1-4

Iv

<U

21

22

23

24

25

lo

27

£H

29

JO

Jl

32

33

34

Jb

i

*i n
-J

:if
T

3

.1

1

3

1

3

3

3

1

3

3

3

3

3

3

)

1

1

1

3

3

3

3

3

3

3

3

)

i

3

1

3

3

3

n

H
0.0

r
0.0

Y
n. 9b

n.d4

11.74

0.63

0.53

•1.42

u.32

0.21

0.11

0.0

-0.11

-0.21

-0.32

-0.42

--J.53

-0.63

-0.7*

-(1.84

-,,.95

U.93

0.84

0.74

0.03

0.5J

il.42

0.32

0.21

0.11

o.O

-n.ll

-11.21

-u.32

-0.4,!

-0.33

-0.63

Z
n.o

i
n.o

0.')

o.o

o.o

o.o

o.o

o.o

o.o

o.o

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0."

0.0

u.o

0.11

0.11

0.11

0.11

0.11

n.ll

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.11

0.11

Hi

0.0
Y*>W

-1.7fV»4i1-13 -1

0,0
Y«

-3.422720-06
-8.100020 01
-5.629300-06
-7.199990 01
-4.764990-06
-6.299990 01
-3. 447010-06
-5.400000 01
-2.424060-06
-4.500000 01
-1.729240-06
-3.600000 01
-1.226650-06
-2.700000 01
-0.023370-07
-l.nOOOOO 01
-3.996040-07
-H. 999990 00
0.0
0.0
3.990040-07
fl. 999990 00
8. 023370-07
l.MOOOOO 01
l.?26650-06
2.099990 01
1.729240-06
3.600000 01
2.424060-06
4.300000 01
1. 447000-06
5.400000 01
4.764970-iib

- 6.0.0,01110 ul
5. «29340-U6
7.200011) 01
3.423110-06
ri. 099900 01
-3.312930-06
-4.100020 01
-5.614250-06
-7.199990 01
-4.780040-06
-6.299990 01
-3.465*90-06
-b. 400000 01
-2.436000-06
-4.500000 01
-1.735270-06
-3.000010 01
-1.228960-06
-2.700000 01
-B.02°4«0-07
-1.000000 01
-3.996-100-07
-3.V999VO 00
-3.*3le60-l4
-4.33141U-U6
J.996HOO-07
8.999980 00
8.02V400-07
l.MOOOOO 01
1.228960-06
?.*9999U Ol
1.735270-06
3.*>OOOOD 01
2.435990-06
4.500000 01
3.465470-06
3.400000 01

-.».
n.o
I pa
.43hOO-06 1.

(1.0
it

1.3/7080-13
1 .990000-05

-«*. 38̂ 290- 12
1.768920-03
-6.773760-12
1.547800-05

-3.214270-12
I.j2ft690-0b
-1.123980-12
1.105b70-0b
-2.331910-13
ft. 84*590-00
6.586290-14
6.633430-06
1.32b990-13
4.42?290-06
1.005720-U
?.•?! 1 150-06
o.o
0.0
-1.654780-13
-2.211150-06
-3.941260-13
-4.42?290-06
-7.236170-U
-6.633440-06
-1.251060-12
-H. 444610-00
-?. 307300-12
-1.10*b7o-0b
-4.»4b80O-12
- ,326090-Ob
- .9bny90-12
- .->4701o-0b
- .i)6<.o8o-ll
- ,/6892O-Ob
-2.122200-12
-1.990010-Ob
-1.228630-07
-M. 999980 00
-2.34246U-07
-8.994970 00
-?. 279290-07
-8.999970 00
-1.927860-07
-rt. 499970 00
-1.626160-07
-8.999980 00
-1. ,.47980-07
-«. 999980 00
-1.367330-07
-H. 494980 00
-1. 34̂ 030-07
-1.99498O OC
-1 . 13404U-07
--•.•49-4V9U 00
-1. 1J3S1J-07
-^.^QOVVU OU
-1. JJ4040-07
.0.994990 00
-1 .340030-07
-4.4V999O 00
-1.367J40-07
-H.99999U 00
-1.448000-07
-M.99999U 00
-1.626180-07
-<V.OOOOOu 00
-1.927080-07
-4.00000O 00

JO

OIST
43600-06

DEL
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

n.o

0.0

o.o

o.o
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

' 0.0

0.0

0.0

0.0

0.0

o.o

0.0

'

YS DEL Y
-1.26680-06 -2.52831

OPO
-2.035070-04

-1.587280-04

-1.110040-04

-7.414230-05

-4.800000-03

-2.950930-05

-1.630090-05

-7.200050-06

-1.797790-06

0.0

-1.797790-06

-7.200040-06

-1.630090-05

-2.950920-05

-4.800000-Ob

-7.414230-OS_

-1.110050-04

-1.507290-04

-2.035060-04

-2.040690-04

-I.b97d40-04

-1.120280-04

-7.500760-03

-4.873000-Ob

-3. 015970-05

-1.691360-05

-7.803630-06

-2.397U50-06

-6.000610-07

-2.397050-06

-7.803020-06

-1.691560-05

-3.01597Q-05
(36)

-4.873000-05

-7.500770-05
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TABLE 4-2 (Continued)

J6

j;

ji

j*

41)

<•!

42

43

44

45

46

»7

49

ft1*

so

S>1

52

53

54

55

96

37

53

39

60

01

62

63

64

65

66

67

60

64

70

71

72

73

7«

75

76

3

)

1

4

3

3

3

3

3

3

3

1

3

3

3

3

3

3

3

1

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

1

3

3

3

3

-j./»

-u.4*

-.1.93

C..93

0.*4

0.74

II. 6 J

0.53

0.«2

n.J2

0.21

0.11

0.0

-ii.H

-0.21

-0.32

-0.42

-0.53

-0.63

-0.7*

-0.84

-0.95

H.95

II. 0*

0.7*

0.63

0.53

0.42

0.32

0.21

0.11

0.0

-0.11

-0.21

-0.32

-11.42

-0.3J

-0.63

-0.7*

-0,84

-O.S3

J.ll

...11

u.ll

n.21

o.<M

0.21

0.21

0.21

0.21

0.21

O.?l

0.21

0.21

O.?l

0.21

u.21

0.21

o.<ri

0.21

O.?l

0.21

U.21

i».i*

o. J2

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

0.32

O.J2

0.32

0.3l

o. 'n002n-0b
•<. «i»0.-10 01
IJ.'>1'»<?90-06
'.rOOOlO 01
3.31J J4U-00
B.094u7o 01
-2,««6856n-06
-*».l0002u 01
-b.'»62<.30-06
-7.1V9990 01
-4.H23080-06
-6.̂ 99990 01
-3.Siebttl'-o6
-5.000000 01
-2,«.72620-06
-4.-iOOOOn 01
-l./b41SO-06
-3.100010 01
-l.?36500-06
-2.700000 01
-a.Os!21D-07
-l.^OOOOO 01
-4.000bOO-07
-9.000000 00
-1.*>H3UTO-13
-1.2y034l)-OS
4. OOObOO-07
H.Q49970 00
8.031^00-07
l.HOOOOCi 01
1.236500-06
2.*<*999u 01
1.754190-06
3.600000 01
2.*7<i6lD-06
4.bOOOOO 01
1.!>l»b60-06
5.000000 01
4.H?3U60-06
'i.JOOOlO 01
s.«-62»an-o6
7.20001U 01
.̂Qt>4000-06

»».ov'j<57r) 01
-2.3»269n-06
-H. 100030 01
-•J.-52020-06
-7. 1̂ 9990 01
-4.8«7120-06
-6.2999VO 01
-3.A06920-06
-5.000000 01
-2.536220-06
-4.SOOOOO 01
-1.788S30-06
-3.600010 01
-1.251130-06
-2.700000 01
-8. 099350-07
-l.HOOOOu 01
-4.011730-07
-9.000010 00
-3. 623070-13
-2.5721bO-Ob
4.011720-07
8.999̂ 60 00
fl. 099340-07
1.799990 01
1.251130-06
2.499990 01
1.7H8530-06
3.600000 01
2.S36210-06
4.500000 01
3.*>0«><<00-06
S.ouOOOO 01
*,AP 7 100-06
ft. 300010 01
5.*b2h90-06
7.200000 01
2.343200-06
». 099960 01

-,>.27<»J2Li-07
--t.itOnOOU OU
--'. Jo<?bJU-07
-u.nOOOlu 00
-1.228b2u-07
-9.00000U 00
-2.20182U-07
-l.HOOOOu 01
-0.641580-07
-1. 79Q99U 01
-4.599560-07
-l.HOOOOu 01
-3.91475U-07
-l.HOOOOU 01
-3.30121U-07
-1.HOOOOU 01
-2.^27530-07
-l.HOOOOU 01
-2.75103U-07
-l.rtOOOOU ol
-2.e87JOO-o7
-1.400000 01
-2.670550-07
-l.HOOOOU Ol
-2. 668090-07
-1. -lOOOOD 01
-?.67055D-07
-I.DOOOOU 01
-?. 667320-07
-l.-iOOOOU 01
-<>.75145U-07
-l.nonoou 01
-2.-»27560-07
-l.rtOOOOU Ol
-3.J01230-07
-l.riOnOOO 01
-3.«lo78U-07
-l.BOoOOu 01
-4.b9v6lU-07
-l.^OOOOU 01
-4.64170U-07
-l.HOOOOU Ol
-?.20̂ 20U-07
-l.dOOOOu 01
-?.60«5j««0-07
-?./OnOOu 01
-6.rt<;48HU-07
-2.|><<<»49U 01
-0.>>9091U-07
-2.69999U 01
-6.01954U-07
-?. 690990 01
-S. 079190-07
-2.700000 01
-0.477270-07
-?. 700000 01
-4.175980-07
-2.700000 01
-4.obb06U-07
-2.700000 01
-4.017060-07
-2.70000U 01
-4.o09b4o-07
-2.700000 01
-4.01707U-07
-2.700000 01
-4.Qb5070-07
-2.70000U 01
-».176010-07
-?.7UOOOU 01
-4.477300-07
-2.70000U 01
-a.079220-07
-?.70000u 01
-6.019S8U-07
-•>. 700000 Oi
-6.9V09dU-0/
-P.70000O Ol
-0.|*2<?OBO-07
-3.700000 01
-2.»>0702U-07
-2.69V99J 01

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.o

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

o.u

0.0

0.0

-I. 120290-04

-1.597b50-04

-2.0*0680-04

-2.0,56430-04

-1.629320-04

-1.151200-04

-7.763020-05

-5.094170-05

-3.212bOO-05

-1. 876710-05

-9.615020-06

-4.198030-06

-2.400240-06

-4.19U030-06

-9.615010-06

-1.876710-05

-3. 212500-05

-5.094170-05

-7.763020-05

-1.151200-04

-1.629J30-04

-2.0b6»*0-04

-2.07BOJO-04

-1.681050-04

-1.203290-04

-fl. 208960-05

-5.470JOO-05

-3.545020-05

-2.188020-05

-1.264680-05

-7.20B060-06

-5.404370-06

-7.208060-06

-1.264680-05

-2.134020-05

-3.545020-Ob

-5.470290-05

-8.20*5960-05

-1.203300-04
(37)

-1.681050-04

-2.078630-04
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7 7

la

It

*« i

«2

eJ

a*

aS

a6

o7

a8

a9

vO

il

1

i

3

3

3

3

3

1

3

1

3

3

U

I

u

0

0

0

II

0

-0

-0

-il

-II

-0

-0

.a*

.74

.03

.42

.32

.21

.11

.0

.11

.21

.32

.42

.53

.63

11.42

i>.42

u.»2

n.42

0

il

0

0

0

0

0

n

0

0

.42

.42

.42

.42

.42

.42

.42

.42

.42

.42

ORSG1NAL. PAGE JS
OF POOR QUALITY

TABLE 4-2 (Continued)

-1./43000-06 -•». 75*320-07 0
-/ .•>oooon 01 - t .»>oooou 01

-•>.*99>-»fi 01 -t.ioiioou 01

-3,»0000u 01 - <.60000o 01
-2."3004Ci-06 -7.022760-07 0
-4.bOOOlo 01 -J. iUOOOO 01
-1. 142350-00 -f>. 14^3*0-07 0
-3.
-1.
-2.
-9.
-1.
-*.
-9.
-6.
-4.

4.

8.
a.
l.
1.
2.
1.
3.
2.
».
3.

60001O 01
276050-06
ToonOO 01
1V340U-07
lOOOOP ul
039190-07
000030 00
S60170-13
2H0250-05
039180-07
9999*0 00
193390-07
799990 01
2761)50-06
699990 01
842350-06
ftOOOOl) 01
6301)30-06
bOOOOO 01
728a70-06

-3
-•j
-•J
-S
-.1
-S
-i
-b
-_•»
-i,
-3

-^
-3
-b
-3
-6
-•)

-7
-J
-•4

5.40000U 01 -)
v2

93

9*

45

96

y7

•»•»

•49

luO

101

lo'

lol

10*

105

106

107

lo*

109

110

111

112

1 ) 3I i J

11K

1 !->

116

117

3

3

3

3

3

3

3

1

1

J

3

3

3

1

3

3

3

3

3

3

3

3

J

3

3

-0

-0

0

n

ii

0

0

u

0

J

u

-0

-0

-it

-0

-0

-0

-0

-0

u

I)

ii

il

il

0

II

.7*

.a*

.84

.7*

.63

.53

.42

.32

.21

.11

.»

.11

.21

.J2

.42

.53

.63

.7*

.a*

.7*

.63

^

.42

.32

.21

.11

0

0

0

0

0

0

0

0

I)

0

0

0

0

0

0

0

0

0

0

0

0

f)

0

n

0

0

.42

.42

.bJ

• bJ

.SJ

.bJ

.bJ

.b3

• iJ

• b J

.bJ

.53

.53

• bJ

.53

.53

.5J

• 5j

.53

.6J

.6J

| (

.63

.63

.63

.63

4,
f>.
5.
7.

-*.
-7.
-5.
-*>.
-I.
-b.
-2.
-H.

-1.

-1.

-1.

-2.
-M.

-1.

-4.

-9.

-1.

-6.
4.

•i.
g.
1.
1.
y m

1.
3.
2.
4.
3.
3.
b.
H.
4.
7.

-5.
-6.
-4.

-S.

-4.

-^.
-3.
-1.
-2.
-1.
-1.
-*.
-9.

Vb8070-06
300000 01
2*5/00-06
200000 Ul
f>77aSO-06
?OOOOI> 01
010«70-06
400000 01
t»79lln-06
400001) 01
75707|i-06
500010 01
920o40-06
•-itOOl,) 01
~\\ "> /ar'-u6
/ O u O O v o l
)6^-*4l,-u 7
-^uo^uo ol
096^0(^-0 7
oo A'I 5( u 0
OS7o60-12
419/20-05
09678(.-07
v99^20 00
362910-07
799990 Ol
.U5/8i)-06
699990 01
V20a30-06
600000 01
757o50-0b
b»o ion 01
67904H-06
••OOOOo 01
010bbl)-06
30000') 01
9780JO-06
199V9H 01
003090-06
400000 01
044000-06
-UOUUli 01

^UOjlu ul
02936»-oo
600ul.< 01
3/5rt7o-06
700010 01
647650-07
rtOOOlO 01
204JOO-07
ooooen oo

-9
-J
-n

-3
-1
-4
-)

-4

-1

-4

—4

-*
-M

-«
- /

-*--,
-4

-<!

-A

-*,
-4

-6
-4

-*>
-4
-7
-4

-rt
-4

-9
-4

-1
-4

-1
-4

-1

-«

-1

-S
-1
-S

-1
-1
-1
-5
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TABLE 4-2 (Continued)
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concave toward the source on earth and is astigmatic, i.e., has different

curvatures in any two orthogonal meridians. The semiprofiles in the extreme

meridians and along the diagonal meridian are plotted to scale in Figures 4-3A

and 4-3B for the two HCR cases. The axes are oriented as indicated in Figure

4-1. Any rotation of the HCR about the axis of symmetry would equally rotate

the reflected astigmatic wavefront.

Two calculations were made with the OPD's tabulated in Tables 4-1 and 4-2.

The first was to derive the RMS wavefront error corresponding to each set of

OPD's. These values are X/15.3 for Case 1 and X/6.1 for Case 2, respectively
-4

(X = 5.4 x 10 mm). The second calculation gave the intensity of the central

maximum of the far field diffraction pattern relative to that of a perfect

reflector. The mathematical basis for this calculation is as follows:

The central maximum intensity I is:

i = Iu |2

where

D = /*/2ir
 ei*<r.e> rdrde

o o

In this expression, r and 6 are polar coordinates of a specific point in the

pupil of radius R. To a close approximation, the 293 OPD's for the wavefront

in question can be combined in a summation instead of in a double integral
,/•

and normalized by the expressions:

I c

"III2

where N is the number of points and <f> is the individual OPD at one of the N

points. For the two cases of interest here, the values of the central intensity

are 73 percent and 33 percent for Cases 1 and 2, respectively, compared to the

theoretical values for a perfect HCR.
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It is of interest to compare these calculated intensities to the values given

by Marechal's equation for this parameter as defined on page 468 of Born and

Wolf "Principles of Optics" 7 which is

peak

where A<j> is the RMS departure of the wavefront from the sphere centered at

the diffraction focus (i.e., in the far field). For the abovementioned RMS

error of the Case 1 hypothetical HCR, the value of I , computed by this

expression is 83 percent. The variation between this value and the 73 per-

cent value calculated by numerical integration of the OPD map is believed to

result from the nonrandom distribution of OPD's in the real case as compared

to the assumed random distribution for the Marechal type calculation. In

either case, this distorted HCR would be considered to provide excellent

imagery. Since the Marechal equation is valid only for wavefronts with rela-

tively small RMS deformation and "small" generally means A/10 or smaller, it

cannot be used to confirm the numerically integrated intensity value for the

Case 2 deformed HCR. The 33 percent calculated value of the latter intensity

is considered accurate within the degree of approximation of our thermal anal-

ysis of the orbiting HCRv- It may, therefore, be used as the basis for evalua-

ting the thermal results.

Table 3-4 gives 'the maximum calculated sags of the mirror plates for HCR's

made of ULE and Cervit and having three types of reflecting coatings at that

point in the synchronous orbit where solar irradiation causes the maximum

surface distortions. Selected values are reproduced in Table 4-3 for reference

along with the corresponding data for the two hypothetical HCR's just discussed.

The basis for the estimations in the "RMS Wavefront" and "Relative Intensity"

columns are explained in the footnotes on the table.

Figure 4-4 shows the variation of the diffraction pattern central maximum in-

tensity with RMS wavefront error in two ways. The computed values for the

two hypothetical cases were plotted at the points marked (x) . The straight

dashed line through these points provides a means of estimating the inten-

4-17
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RELATIVE
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sities for the various HCR designs indicated by A symbols. The solid curve

represents the Marechal approximation for random wavefront errors which, as

was explained earlier, does not fully apply to these deformed HCR's.

It may be noted that HCR's made of ULE with any of the coatings considered

here would be considered excellent. Cervit would perform quite well if the

"best" coating can be applied. Its performance with the standard coating is

not as good. From the optical performance viewpoint, therefore, it would seem

that ULE is the preferred material for use in the thermally distorted HCR op-

erating in a synchronous orbit.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

The results of this study indicate that a HCR constructed of two suitably

coated, flat ULE mirrors 2 cm thick (optically contacted to a similar mirror,

5 cm thick, so as to form three mutually perpendicular surfaces within +0.30

arc-second) could retroreflect a beam from the earth with a high degree of

optical fidelity even though the HCR is subjected to the solar input charac-

teristics of a satellite in a synchronous orbit. The performance of this HCR,

expressed in terms of the relative energy in the central maximum of the far-

field diffraction pattern, should exceed 80 percent of that expected from an

ideal, undistorted HCR in visible light.

While the preliminary design of such a HCR, having an aperture of 200 square

centimeters, has been established under this study (see Section 2.4), more

detailed considerations should be given to certain aspects of that design in

a future related effort. Those aspects include:

• Theoretical and experimental verification of the suitability of the

recommended overcoated metallic coating having special thermal charac-

teristics discussed in Section 2.3.4. Included in this would be con^-

siderations of polarization effects, durability, and ease of application

to the HCR mirrors.

• Detailed design of a suitable mechanical mount for the HCR and establish-

ment of a suitable mechanical and thermal interface with a typical

satellite.

• Complete thermal analysis using a more detailed computer model than

could be utilized under the limited scope of the present study. This

analysis would be expected to confirm the approximate (but conservative)

evaluation summarized in Section 3 of this report and would use the 58

node model discussed in Section 3.3.
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Following these detailed design considerations, several prototype HCR models

should be fabricated and evaluated in a simulated environment typical of that

expected in the synchronous orbit. The shock and vibration (including acous-

tic) effects of launch, staging, docking, etc. should be evaluated as well as

thermal inputs. Optical performance should be evaluated by interferometric

techniques while the prototypes are thermally distorted to confirm predictions

made in Section 4 of this report. In order to provide a reasonable statistical

evaluation and to maximize confidence in the test results, Perkin-Elmer recom-

mends that a minimum of 20 units be fabricated and tested.

The Perkin-Elmer Corporation is well-qualified and eager to continue to assist

NASA in this development program. We have the expertise required to complete

the design, fabrication and experimental tasks as well as the computer pro-

grams and scientific skills needed to complete the detailed thermal analysis

of the final design. Through application of these talents, NASA is assured

of the high caliber product and definitive experimental results which would

then lead to a successful application of the HCR to a variety of operational

systems.
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APPENDIX A

SOME CONSIDERATIONS OF BONDED HCR AS MANUFACTURED

BY PRECISION LAPPING & OPTICAL CO., INC.

Concept No. 2 for the HCR (Hollow Corner Retroreflector), as defined in

Section 2 of this report, consists of three mirror plates held at right an-

gles to each other by an epoxy or similar bonding material. Perkin-Elmer's

experience with this type of construction for other optical components indi-

cates that there may be potential problems in achieving adequate long-term

stability for the present application of the HCR as contemplated by GSFC.

Devices of this general type are currently being manufactured by Precision

Lapping & Optical Co., Inc., of Valley Stream, N.Y. The attached data sheet

describes a 5 inch aperture HCR offered by this firm. In order to seek more

information concerning the device, Perkin-Elmerfs Project Engineer discussed

the design with Mr. Morton Lipkins of Precision Lapping on 26 December 1974.

Mr. Lipkins holds a basic patent (No. 3,663,084 — see attached copy) on

bonded HCRs and has filed applications for four related patents.

Precision Lapping manufactures single and multiple HCRs in the 1/4 to 24 inch

aperture range and is under contract to Johnson Space Flight Center for units

to be flown on the Apollo-Soyuz Space Mission. While these devices are gener-

ally intended for commercial applications, the performance claimed by Preci-

sion Lapping leads to the conclusion that such devices should be suitable

for military and space applications.

Due to the proprietary nature of the processes and materials, used in the

construction of these HCRs, details regarding their design have not been re-

vealed to Perkin-Elmer. Interferograms (see below) and typical hardware ex-

amined by our representative indicate a high quality product. No specific

test data indicating environmental resistance or long-term reliability was

A-l



ORIGINAL PAGE IS
OF POOR QUALITY.

ER-275

provided by Mr. Lipkins. Nevertheless, he indicated willingness to provide
2

sample HCRs with hexagonal 200 cm apertures made by their best state-of-the-

art construction techniques and materials for evaluation by Perkin-Elmer and/

or GSFC in the future. No estimate of the cost of these units was requested

nor volunteered.

Typical Interferogram of HCR Cluster Manu-
factured by Precision Lapping and Optical

' Co. (Photo furnished by Mr. M. Lipkins)
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APPENDIX C

OUTLINE OF 58 NODE COMPUTER MODEL PROPOSED

FOR MORE DETAILED THERMAL ANALYSIS OF THE HCR

The proposed 58 node model contains 16 nodes in each of the three faces of

the HCR. The location of the nodal points and the allowable conduction paths

between them are shown in Figure C-l for the X *- Y .plane. The nodal arrange-

ments in the other planes are similar. The nodal areas associated with each

node are indicated in the figure. These areas were determined with the

Perkin-Elmer computer program TRIANGLE, which is based on the theory of the

irregular triangular grid presented in Reference 16.

The model would also contain one node for space, one node for an isothermal

rear environment, and eight additional nodes on the 5 cm thick base plate of

the HCR where it is joined to the 2 cm thick plates.

The aspects of the 58 node model, which is different from most multinode heat

transfer analyses, are in the calculations of the radiation interchange and

the total incident fluxes. Both these calculations involve the properties of

specular surfaces. The method for calculating the radiation interchanges is

considered first.

Figure C-2 shows the path of two reflected rays from point 1 on the X - Z plane,

surface B, to point 2 on the X - Y plane, surface A. One ray goes directly

to 2 and the other is partially reflected at point 3 on surface B, i.e., the

fraction (1-=) of it is reflected; the rest is absorbed. Both rays are re-

flected in a specular fashion from point 2. The direct ray may next be inci-

dent upon surface C, but the reflected ray must leave the corner cube. Neither
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NODE NUMBER

CONDUCTION PATH

Figure C-l. Nodal Locations and Allowable Conduction Paths
in X - Y Plane of 58 Node Model
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Figure C-2. Alternate Paths of Emitted Energy from Point 1 to Point 2
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ray can return to surface B. The radiation shape factor from an infinitesimal

area at point 1 to an infinitesimal area at point 2 may be found by using the

structural equations or standard computer programs such as CONFAC. The radia-

tion shape factor for the reflected ray is found in a similar fashion except

that -the mirror image of point 2 is used. This is illustrated in Figure C-3.

The equivalent shape factor for radiation heat transfer between surfaces 1 and

2 is thus (F.. _ + pF.. _) . Similar analyses apply between the other two pairs

of surfaces, i.e., (B,C) and (A,C). Shadowing or blockage is not a factor in

this analysis because the plates are all the same size and because the plates

are flat.

Blockage, however, becomes important in the calculation of the incident fluxes

from external sources, i.e., the solar, earthshine, and albedo fluxes. Five

parallel incoming rays that strike surface A are shown in Figure C-4. These

rays are representative of the incoming solar, albedo and earthshine. One

ray is directly incident upon the surface. (The directly incident fluxes may

be calculated by standard computer programs. At Perkin-Elmer, this is done

with the program called FLUXES, which is fully described in ER-166 .) The

second incoming ray strikes surface C and is reflected onto surface D. The

energy flux corresponding to this ray is p times the flux that passes through

a port equivalent to surface C and is incident upon the mirror image of sur-

face A (see Figure C-5). If the computer program equivalent to FLUXES does

not contain a "PORT" option, then an equivalent port must be generated by

blockage surfaces. One means of accomplishing this is shown in Figure C-6.

In a similar fashion, the flux which is reflected off B onto A is equal to p

times the flux which passes through a port equivalent to surface B and is in-

cident upon the mirror image of surface A in mirror B. The last two rays

shpwn in Figure C-4 are those that are incident upon surface D after reflec-

tions off two surfaces. The ray that strikes surfaces C and B in that order

is shown in Figure C-7. The incoming ray strikes surface C at point R, is

reflected to point Q on surface B, and then is incident upon surface A at

ER-166,"Manual of Computer Programs for Thermal Analysis of Orbiting Vehicles",
dated 6 May 1971, The Perkin-Elmer Corporation, Optical Technology Division.
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MIRROR IMAGE
OF SURFACE A

Figure c-3. Mirror Image of Reflected Ray Which Is Emitted
by Point 1 and Incident upon Point 2
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X

Figure C-4. Energy Incident upon Surface A after
0, 1, and 2 Reflections
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PORT EQUIVALENT
TO SURFACE C

PORT EQUIVALENT
TO SURFACE B

MIRROR IMAGE
OF REFLECTED RAY

MIRROR IMAGE
OF A IN B

MIRROR IMAGE
OF REFLECTED RAY

MIRROR IMAGE
OF A IN C

Figure C-5. Paths and Mirror Images of Rays Which Are
Incident upon Surface A after 1 Reflection
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10
(0., 3.85)

Figure C-6. Coordinates for Generating Minimum Number of
Blockage Quadralaterals for HCR Face
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PORT EQUIVALENT TO MIRROR
IMAGE OF SURFACE B

MIRROR IMAGE OF
A1 IN B1

PORT EQUIVALENT
TO SURFACE C

MIRROR IMAGE
OF A IN C

Figure c-7. Paths and Mirror Images of an Incident Ray
Which Reaches Surface A after 2 Reflections
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2
point P. The intensity of the fluxes represented by this ray is p times the

intensity of the fluxes which pass through Port C and through Port B (the

mirror image of Port B) and is then incident upon A", the image of the image A.

A similar analysis applies for the other doubly reflected ray.

Once the fluxes and shape factors have been generated, the analysis proceeds

in a routine fashion. The calculation of the fluxes, the determination of

the mean steady orbital temperature distribution, and the calculation of the

transient temperature distribution in a 24 hour orbit, however, would require

several hours computation time on the Perkin-Elmer Computer System.
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