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Abstract.

We examine the evidence for the detection of satellite-dependent s,ignatures in the laser range

observations obtained by the UK single-photon SLR system. Models of the expected obser-

vation distributions from Ajisai and Lageos are developed from the published satellite spread

functions and from the characteristics of the SLR system, and compared with the observa-

tions. The effects of vamfing return strengths are discused using the models and by experi-

mental observations of Ajisai, during which a range of return, levels from single to multiple-

photons is achieved. The implications of these results for system-dependent centre of mass

corrections are discussed.

1. Introduction.

The UK SLR system sited at Herstmonceux, and run by the Royal Greenwich Observatory,

routinely observes the primary tax'gets ERS-1, Lageos, Etalon-1 and -2, Starlette and Aji-

sai. The single-shot precision achieved by calibration ranging is close to 1 cm (1-sigma).

Tile detection and timing hardware has recently been upgraded to include a Single Photon

Avalanche Photodio(le (SPAD, Procha.zk_t ctal, 1990), and an HP 5370 time interred counter.

Epoch is derived at present from a Maryland 4-stop event timer, which is also used to make

rangc measurements simultaneously and independently of the HP counter. Pass-averaged

return rates are in general fairly low, varying from a few percent from the Etalon satellites,

through about 20% fl'om Lageos to up to 50% from Ajisai. Returns from the calibration

targets are deliberately kept to similarly low levels (about 10-15%) using neutral density fil-

ters in the laser path. Under such conditions we can describe the system as a single photorl

return, single photon detection system. A detailed study of the system error budget was

carried out following the upgrade of the detector from a PMT. During this investigation it

becaxne clear that the observational precision of in particular Lageos and Ajisai was consis-

tently worse than that of the calibration targets. It was considered likely that the spacial

distribution of the retroreflector arrays on the satellites would modify the distribution of the

range residuals, when compared with those from the fiat calibration targets. In this paper we
examine the evidence for detection of satellite signatures in our range observations, compare

the observations with models of the expected distributions from a selection of those satel-

lites regularly observed, and discuss the implications in terms of the appropriate corrections

required to reduce the observations to the centres of mass of the satellites

2. Observations.

This investigation is based upon the pass-by-pass range residuals that are formed during
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the preprocessingstageto compute on-site normal points. All trends in the residuals due to

errors in the predicted orbit of the satellite are removed during this process, which iteratively

solves for corrections to a set of orbit-related parameters, rejecting at each stage residuals

falling outside a 3-sigma band (Appleby and Sinclair, 1992, these proceedings). In a final

stage of pre-processing, and as a useful che¢& on system performance, the residuals are used

to form a frequency distribution for each pass, by grouping the residuals in range bins.

A normal distribution is fitted to the observed distribution by iterative least-squares, and

the parameters of the fitted Gaussian are used to make a final selection of the origin',.1
observations. Examples of the observed distributions and their fitted Gaussian distributions

are shown in Figure 1. Also shown in the Figure is a typical distribution of ranges to a

cMibration target board, distant about 600 m from the SLR system. The observed range

values are plotted relative to the mean of the fitted Gaussian distributions, which are also

shown on each plot. The standard deviations of the fitted distributions are shown, along

with higher moments of the data, expressed as skewness and kurtosis. For a perfect Gaussian

distribution the values of skewness and kurtosis would be 0.0 and 3.0 respectively.
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2.1 Discussion.

From the distributions shown in Figure 1, we make the following observations. The distri-

butions of the calibration ranges and those fl-om Starlette and ERS-1 are clearly symmetric

and well-fitted by the Gaussian distributions, but all have a significant 'tail' of observations

outside the fitted curves. Skewness values for these 3 targets are between 0.05 and 0.1. The

Lageos distribution is much less symmetric, and is less well fit by the Gaussian distribution.

A chi-square goodness of fit test indicates significant departure, at a 5% level of significance,
from the best-fit distribution shown in the plot. The results from Ajisai and Etalon 1 show

large asymmetry, and are not at all well fit by the Gaussian distributions. Of particular

significance to this investigation, are the 'widths' of the distributions, characterized by the
standard deviations of the fitted distributions. Mean values of these standard deviations for

a number of observations made during November and December 1991 arc given in the Table

below. These mean values of standard deviations confirm the impression given in Figure 1,

that the calibration ranges have the smallest scatter, and those of Ajisai and Etalon-1 the

largest, the range of standard deviations being from 1.1 cm to 4.8 cm.

Target a
llll-n

Calib 11

ERS-1 12

Starlette 16

LAGEOS 18

Ajisai 32
Etalon 48

Before proceeding to investigate the hypothesis that satellite signatures arc present in our

observations, we first consider the possible causes of the 'tail' in the distributions, particularly

evident in the calibration and Starlette data. We remark here that the existence of this tail

does not constitute the thrust of our argument that we are detecting satellite signatures in

our observations, since the tail is also present in the calibration ranges from a flat target

board. We must therefore rule out such a target-induced effect and consider as probable

cause the SPAD or the laser. In an experiment primarily designed to quantify the system

time-walk under a large range of return signal strengths, calibration ranging was carried out

using neutral density filters to vary the average number of photons reaching the detector.

In this way the average number of photons was varied from about 0.5 to 50 photons per

shot, as deduced fl'om the observed return rates. A selection of the results is given in

Figure 2, where the results are displayed in histogram form as before. The plots show, as

expected, a reduction in the standard deviations of the distributions with increasing signal

strength, since for a given laser pulse-width we would expect the contribution of the laser

to the observational jitter to decrease with increasing number of photons in the return

train, as the single-event detector increasingly receives photons originating nearer to the

leading edge of the transmitted pulse. The plots also demonstrate that the extent of the
tail in the distributions decreases with signal strength, suggesting an origin within the laser.

However Prochazka (1992, private communication), points out that correct optical alignment
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Figure 2. Calibration distributions as a function of average numbers u of returning photons.
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of the SPAD detector is essential to avoid possible effects of non-uniformity within the chip.

Resolution of this problem awaits further experimentation.

3. Satellite Signature Models.

We now take as our standard, single-photon system-signature the calibration distribution

shown in Figure 1, and develop from it models of expected satellite return signatures, by

convolution with the spread functions of Lageos and Ajisai. For Lageos, we take the model

of cross-section para_neters based upon row-by-row far-field diffraction pattern tests in polar

orientation, presented in Fitzmaurice et al (1977). The parameters give, for the particular

orientation, the lidar cross-section and number of corner cubes, in rows, contributing to the

strength of returning signal. Also given is the optical distance of each row of reflectors fl'om

the spacecraft centre of gravity. We use the effective cross section of the cubes in their

rings, of known distances from the centre of the satellite, to caxry out a convolution of our

system signature with that of Lageos. In this estimate of the shape of the returning pulse

we ignore the effects of changing polarisation, which mainly affects the amplitude of the

convolved pulse, and not its shape (Fitzmanrice et al 1977.) To model the return signatures

from Ajisa_ we use the results of a computer simulation carried out by Sasald and Hashimoto

(1987). They find that the number of retroreflector sets contributing to the return signal from
a given single laser pulse can only be 1, 2 or 3.5, and give the computed pulse shape in each of
these 3 cases. The laser used in their simulation is gaussian in profile, of standard deviation

33 ps. From the published profiles, we can infer the spread distributions, consisting of lidar
cross-section's and dista.nccs from spa.cecrMt ccntrc of grltvity. We now have the informa.tion

required to ca.rry out a convolution with our system signature, in the same way as for Lagcos.
Wc assume that the rapid spin rate of Ajisai, of 40 rpm (Sasaki and H,'Lshimoto, 1987) will

ensure that for cvcry pass all 3 possible orientations of the slitellite will be sampled. Wc thus

convolve our system signature with each of the spread distributions, and sum the resulting

3 distributions.

The results of the simulations for Lageos and Ajisai are shown in histogram form in Figures

3(a) and (b), where the quoted standard deviations are those of the fitted Gaussian distri-

butions, also shown on the plots. For completeness wc also present in Figure 3 the result of

convolving our system scpaz'ately with each of the 3 orientations of Ajisai.
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Figure 3. (a) SimulaLcd L_gcos rangc residual distributions.
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of the SPAD detector is essential to avoid possible effects of non-uniformity within the chip.
Resolution of this problem awaits further experimentation.

3. Satellite Signature Models.

We now take as our standard, single-photon system-signature the calibration distribution

shown in Figure 1, and develop from it models of expected satellite return signatures, by

convolution with the spread functions of Lageos and Ajisai. For Lageos, we take the model

of cross-section paa'aaneters based upon row-by-row fax-field diffraction pattern tests in polar

orientation, presented in Fitzmaurice et al (1977). The parameters give, for the particula_

orientation, the lidar cross-section and number of corner cubes, in rows, contributing to the
strength of returning signal. Also given is the opticM distance of each row of reflectors from

the spacecraft-centre of gravity. We use the effective cross section of the cubes in their

rings, of known distances from the centre of the satellite, to cazry out a convolution of our

system signature with that of Lageos. In this estimate of the shape of the returning pulse

we ignore the effects of changing polarisation, which mainly affects the amplitude of the

convolved pulse, and not its shape (Fitzmaurice et al 1977.) To model the return signatures
from Ajisai we use the results of a computer simulation carried out by Sasaki and Hashimoto

(1987). They find that the number of retroreflector sets contributing to the return signal from

a given single laser pulse can only be 1, 2 or "1.5, and give the computed pulse shape in each of

these 3 cases. The laser used in their simulation is gaussian in profile, of standard deviation

33 ps. From the published profiles, we Call infer the spread distributions, consisting of lidar

cross-sections and distances from spacecraft centre of gravity, gTe now have the information

required to carry out a convolution with our system signature, in the same way as for Lageos.

We assume that the rapid spin rate of Ajisai, of 40 rpm (Sasaki and Hashimoto, 1987) will

ensurc that for every pass all 3 possible orientations of the satellite will be sampled. Wc thus

convolve our system signature with each of the spread distributions, and sum the resulting
3 distributions.

The results of the simulations for Lageos mad Ajisai axe shown in histogram form in Figures
3(a) and (b), where the quoted standard deviations are those of the fitted Gaussian distri-

butions, also shown on the plots. For completeness we also present in Figure 3 the result of

convolving our system separately with each of the 3 orientations of Ajisai.
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3.1 Discussion.

The standard deviation of the simulated Lageos data (1.7 cm) is close to our observational

mean of 1.8 cm, and the appearance of the simulated and observed histograms is similar.

The underestimate of the observed scatter by our model may be attributed to various causes;

neglect of atmospheric turbulence (Gardner, 197G); neglect of coherency fading induced by

the satellite, and the single satellite orientation chosen for the model. The models of the

Ajisai return signatures give standard deviations of between 2.3 and 3.3 cm, which compare

well with the observational results. There is some evidence in the Ajisai observations of

variations of signature with pass circumstances, which may be due to the dominance of a

particular satellite orientation or orientations for a given ground track.

4. Multi-photon Returns.

The foregoing discussion is based upon return energies at the single photon level; the detected

photon is considered to be a random event taken from a population formed by the convolution

of the laser pulse distribution with that of the satellite response. We now consider the effects

of a larger number of photons reaching the single-photon detector, in order to quantify the

subsequent systematic effects caused by a signal-strength-dependent variation of the mean
reflection distance to the satellite.

4.1 Observations and reduction.

Experiments were carried out using Ajisai since it is relatively easy to obtain a large variation

in received encrgy from the large target. The variation from single photon to multiple photon

levels was achieved during the expcrimental passes by altering the divergence of the laser

beam and hence the energy density at the satellite. The observations wcre filtered in the

standard way, by using them to solve for corrections to the predicted orbit. However, it was

found that this process did not remove all trcnds from the range residuals, indicating the

presence of systematic range biases which varied during the passes. We found that it was

necessary to divide each pass into a number (G) of segments, and use the processing software

to filter the observations in each segment separately. The resulting scatter plot for one of

the experimental passes is shown in Figure 4. The residuals from each of the six segments

are shown in histogram form in Figure 5, along with the standard deviations of the fitted
Gaussian distributions.

We calculate the average percentage return rates at intervals of 30 seconds throughout the

passes by counting the numbers of satcllite returns and the numbcrs of pre-rct_rn noise

detections. Given that the laser fires 10 shots per second, the true percentage return rate in
each 30-second interval is then

(number of true range measurements*100)/(30*10 - number of noise events)

On the assumption that the quantum efficiency of the SPAD is 20%, we calculate from these

corrected return rates the average numbers of photons in each return. However we found

that in several of the 30-second intervals the calculated return rate was nearly 100%. At

such return levels we cannot reliably estimate the mean number of returning photons, which

may be fax in excess of the 16 estimated for a near 100% rate. Where possible, we have

used these 30-second mean values to estimate the mean numbers of photons contributing to

the observations in our 6 segments, and these averages are shown in Figure 5. For those 2
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segments where the average return rates were near 100%, we have asigned the numbers of

photons as >16, but remark that the true numbers could be several times as large.

4.2 Model and Discussion.

There is a clear variation of histogram shape and single-shot precision with change of signal

strength. At low return rates equivalent to single photon returns, the distribution of residuals
is similar to the 'standard' Ajisa.i distribution (Figure 1). For the high return rates little

of the satellite signature remains in the distributions, and the histograms qualitatively and

quantitatively resemble those from Starlette or ERS-1 (Figure 1).

These results cannot be used to detect a systematic variation of satellite mean reflection dis-

ta_uce during the passes, because the method of reducing the observations absorbs any such

corrections. However we can use models to predict both the increase of precision and this

change of mean reflection distance as a function of numbers of photons in each return. We
model the time-distribution of the returning photons, from which we may sample a variable

number, by convolution of the Ajisai spread distributions with a Gaussian distribution of

FWHM 50 ps, to represent the laser. To model the effect of n photons reaching the detector,
we use a random number generator to pick one 'photon' from our time-distribution of pho-

tons, then reco1"d its time-location within the distribution, and repeat the process n times.
We then sort this sequence of n relative event times into chronological order of arrival at the

detector. We model the 20% efficiency of the detector by stepping through the n events in

time order, at each step generating an integer ran(lore number in the range 1-5. If the ran-

dom number is 1, the event is accepted (detected). If the random number is not 1, the next

event is 'tested'. In this way wc generate a large number of event times each resulting from

the selection of a single photon from a series of returns containing an average of n photons.

The mean and standard deviation of these event times arc computed and converted to range

in cm. The standard deviation values are added quadratically to the estimated system jitter

(0.8 cm) to fully model the observations. The results of simulations of range precision and
biases from Ajisai for values of n between 1 and 50 arc shown in Figures 6a and 6b, where

the results hnye bccn joined by continuous lines. The 30-second aver_Lge observed values

of precision, where they can be reliably cstimated (see section 4.1) from our experimental

Ajisai passes, are shown as dots on the graph and agree well with those predicted. The

predicted range bias curve in Figure 6b expresses the expected change of mean reflection
distance from the satellite centre of mass as a result of increasing the number of photons

reaching the detector in each laser return. Most of the bias, which contains a contribution

from the finite pulse length of the laser (FWHM 50ps), is seen to take effect between signal

strengths at the single photon level up to an average of about 40 photons per return. Little

change is predicted with increasing numbers of photons beyond that point.

4.3 Lageos Centre-of-mass correction.

We can use the above techniques to estim_Lte the magnitude of a systematic range-bias for

Lageos, in the context of worldwide SLR systems working at different return-signal levels.

Figure 6 shows the results of a computation of the rmlgc bias as a function of avcragc

number of photons reaching the detector, for 2 modelled laser pulse-lengths. The magnitude

of the change of the effective reflection distaalce from the satellite centre of mass is about
1.3 cm for a variation of return level fl'om single-photons to the 40 photon level. This result
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implies that an SLR system receiving and detecting single photons, and using a laser with

a pulsewidth (FWHM) of 50 ps, is on average effectively observing a distance 1.3 cm closer
to the satellite centre of mass than a single-photon detection system receiving more than

about 40 photons per shot. Removing from this figure the effect of the length (FWHM) of

the laser pulse, the satellite-induced range bias amounts to about 0.6 cm. The recommended
centre-of-mass correction for Lageos is 25.1 cm for leading-edge, half-maximum detection of

a large return pulse, and 24.9 for peak detection (Fitzmaurice et al, 1977). We assume that
the electronic detection of the peak of a large return pulse is equivalent, in terms of distance

from cenre of mass, to the formation of the me,_n of a set of range residuals arising from

the detection of single photons. For the Herstmonceux system working at the level of single

photon returns, the appropriate centre-of-mass correction should therefore be the same as

for the large-pulse, peak-detection systems, ie 24.9 cm. However, for single-photon systems

departing from the single photon regime, the implic_Ltions of this investigation are that the
centre of mass correction should be increased from the 24.9 cm by an amount as given in

Figure 6, depending upon the laser pulse-length and the number of photons reaching the

detector.

5. Conclusion

Using observations fi'om the UK single-photon SLR system, we have demonstrated that the
observational scatter contains a satellite-dependent signature, and that this signature varies

as expected with the number of photons reaching the detector. The implications of this

variation upon the corrections required to relate range observations to the centres-of-ma_s

of the satellites is modelled and discussed. The magnitude of the cffect is system-dependent

since it depends both on the number of photons reaching the detector, _ld hence on laser

energy level and local atmospheric conditions, and upon the laser pulse length. A graph is

presented giving a calculated, energy and pulse-length dependent, center of mass correction

for Lageos range data obtained using single-photon detection, which varies by 1.3 cm over

the range of the parameters considered.
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Abstract

The size and shape of the satellites retroreflector arrays

have a major impact on the distribution and scatter of the return

signal; this can be seen clearly when reaching sub-cm ranging

accuracies and when using Single-Photon Detectors with single- or

multi-photon returns; for other receiver systems (using MCP's) it

should be checked also. As a consequence, the necessary center-

of-mass correction for some satellites will different, depending

on the receiver systems.

While this effect is not yet visible on small satellites or

small retro-reflector arrays (like STARLETTE, ERSl), it can be in

the order of centimeters on AJISAI or ETALON.

1.0 Introduction

The SLR station Graz uses, since some years, Single Photon

Avalanche Diodes (SPAD) to detect return signals from satellites;

these diodes can detect single photons - which is used for

ranging to ETALON, or, in worse atmospheric conditions, also for

lower satellites -, but usually we use multiphoton returns to get

maximum return fates; this results in better accuracies when

using Normal-Point-Methods, and helps to avoid part of the
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satellite signatures
described later.

in the return signal distribution, as

2.0 Ranging tests to the calibration target

Standard calibration to our target (distance about 400 m)

gives an RMS of 6 to 7 mm for the routine SLR setup (with HP5370A

counter, SPAD at I0 V above break, cooled to -27"C; 2.5a limits);

an example is shown in fig. i, upper histogram; the distribution

shows nice symmetry, with an RMS of 5.8 mm at 2.5a ; there is no

significant change of the mean value when using different sigma

criteria, also indicating a proper distribution.

To check influences of the ranging system itself on the

distribution of the return signals, different tests with various

misadjustments of the involved devices were made; a worst-case

example is shown in fig. i, lower histogram: A similar calibra-

tion as before, but with misaligned SPAD, lower voltage above

break, no cooling, and non-optimum start puls detection; this

results in a non-symmetric distribution, higher RMS, and measu-

rable shift of the mean value for varying sigma criteria.

After verifying the maximum contribution of the system itself,

the distribution of returns from different satellites were

analyzed.

3. ERSI and STARLETTE

Due to their small size of the retroreflector arrays there is

no significant satellite signature visible in ERSI and STARLETTE

data; the average RMS is between 8 and 9 mm, close to the values

obtained from the calibration target.

The distribution of the data (fig. 2, upper histogram) is more

or less symmetric, with small irregularities due to lower number

of returns; the 3 mm bin width for all these histograms was

chosen in coincidence with the 20 ps resolution of the HP 5370A

counter.
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4.0 AJISAI

As a contrast to the previous satellites, AJISAI shows quite

significant signatures; these are very dependant of the return

signal strength (fig. 3).
With strong (multiphoton) return signals, AJISAI shows low RMS

(11.8 mm, upper histogram), and only slightly non-symmetric
distribution; when reducing the return signal level to mostly

single photon-electrons (by switching off the last laser

amplifier, and opening divergence; the return signal level is
checked in real time by watching the return signal rate and/or

the number of semi-train returns on a graphic screen), the RMS

increases to 22 mm (lower histogram), while the distribution now

follows the shape of the satellite.
Both histograms in fig. 3 are shown with editing criteria of

2.5 a, which is used for our routine ranging procedures; using
other a values (4 a, 3 o, 2 a), the mean value of the histogram

will move - in the worst cases - between 1 and almost 2 cm.

5.0 LAGEOS

As expected from size and shape of LAGEOS, the satellite

signature is much less visible than with AJISAI, but is still

present (fig. 2); it is the main contribution to the increase of

the RMS, from 6 to 7 mm from the target, to ii to 14 mm from the

satellite (again, this is valid for our single-photon detection

system, using single photon and/or multi-photon return

signals!!), with lower signal levels resulting in higher RMS.

When using different editing criteria again, the non-symmetric

distribution causes a shift of the mean value of about 1 to 2 mm,

only in extreme cases up to 4 mm.

6.0 ETALON

To complete the satellite's list, we show also the signature

coming from ETALON ranging data, this time using a different way
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of demonstrating the non-symmetric distribution. While fig. 4

shows the residuals of an ETALON-2 pass (demonstrating also the

advantage of using the semitrain!), in fig. 5 the residuals are

plotted after "folding", polynomial fitting and 2.Sa-editing. Due

to the low return signal level from these satellites (most of the

returns are single photons: We are ranging with 5 to i0 mJ

Semitrain - this is about 2 or 3 mJ for the first pulse! - and 50

cm receiver to the ETALONS, still getting return rates of up to

i000 returns per hour), we see the full satellite's size and

shape in the data, with an RMS of 3.5 to 4 cm

7.0 Conclusion

To keep systematic errors due to the influence of the

satellite's shape as low as possible, we

- keep calibration and satellite return signals in the same level

- use the same editing criteria (2.5 a) for calibration and for

satellite data;

- try to minimize any contributions of the system itself to non-

symmetric distributions.

As far as we know, in all analyzing calculations the

satellites are treated as a "flat" reflecting surface, with a

fixed center-of-mass correction, which was determined before

launch using the detectors, techniques and accuracies available

at that time. However, with the improvements in accuracy, we can

see now the shape of the satellites in our data, which in turn

can influence the values of the center-of-mass corrections; so it

seems necessary to determine the center-of-mass correction with

respect to different receiver systems, and using different values

for the analysis.
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THE PRECISION OF TODAY'S SATELLITE LASER RANGING SYSTEMS

P.J.Dunn and M.H.Torrence, Hughes STX Corp., Lanham,MD

V.Hussen, Bendix Field Engineering Corporation, Greenbelt,MD

M.Peariman, Smlthsonian Astrophysical Observatory, Cambridge,Mass

Introduction

Recent improvements in the accuracy of modern SLR systems are strengthened by the new

capability of many instruments to track an increasing number of geodetic satellite targets without

significant scheduling conflict. This will allow the refinement of some geophysical parameters, such
as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth

orientation and station position. Better time resolution for the locations of fixed observatories will

allow us to monitor more subtle motions at the stations, and transportable systems will be able to

provide indicators of long term trends with shorter occupations. If we are to take advantage of these

improvements, care must be taken to preserve the essential accuracy of an increasing volume of

range observations at each stage of the data reduction process.

The Range Measurement

The SLR measurement is computed as one half of the product of an adopted value of the

speed of light and the observed interval between the transmit time of the pulse and the time of a
detected return. The essential simplicity of this process is tempered by the need for careful

calibration for system delay and atmospheric refraction, as well as for an accurate survey of mount

eccentricity and other important local coordinates to match the millimeter accuracy of the best

current systems. The influence of satellite signature and detector time-walk must also be considered

at this high accuracy level, and we consider here the particular need to preserve any details of these

effects which may be lost in the current normal point compression process.

Normal Point Generation

The loss of detail at each stage of the process to reduce engineering data to normal points

is illustrated in Table 1, which shows the information content of each of the parameters measured

by most instruments for a typical satellite pass or pass sequence. Information on receive energy level

is not necessary if all time-walk characteristics of the detector system have been eliminated or

corrected before data compression. Neither will the absence of calibration details matter if the

distribution of returns is identical to that from the satellite and the same algorithm is applied to

reduce each observation. The accuracy of the satellite observations will be preserved aa long as the

return distribution is normal (or Gaussian) about the mean range.

Shape Factors

Two measures of the deviation of a distribution from normal are illustrated in Figure 1. Any

skewness in the pattern of range residuals about the mean would bias normal points if we assume

that the peak of the distribution is a better measure of the range. Skewness is computed from the

third moment of the residual distribution, just as the standard deviation is based on the second

moment: it is positive for a distribution with a tail towards long ranges, and negative (a rare
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occurrence) when the noise is short. Another shape factor can be simply obtained as a combination

ofthlrd and fourth moments: kurtosls gives an Indication of flatness (low values) or peaklnesa (high

values). A resldual histogram with low kurtosis values can be produced by using a lower value of

the sigma multipller than three for data editing (clipping); high kurtosls values are obtained when

a larger sigma multiplier than three is employed, and the return signal appears as a spike in the
background noise.

Interpretative Aids

The utility of these shape factors can be demonstrated with examples from several different

systems. To illustrate the mechanism used to build the basic contour picture which we have adopted

for data quality assurance we refer to Figure 2, which is a three-dimensional accumulation of a

number of pass histograms for LAGEOS ranges taken at the Grasse Observatory during a three

month interval. The vertical scale shows the percentage of range measurements which lie within ten

millimeter bins distributed about the mean value. An imaginative reader will observe a progression

from a nearly symmetrical distribution in December 1990 to a significantly skewed pattern in

February 1991: the front profile on 91-02-27 demonstrates the characteristic of long noise. The
coarse grain caused by the centimeter bin width is softened in the contour of the same data which

is shown in Figure 3. The grey band of the contour scale shows a shift in the distribution in early

January 1991 and the lighter peaks also suggest a change in character at this time: the darker

contour levels emphasize the asymmetrical tail towards long ranges in January and February 1991.

Quantifying the residual behavior

Numerical descriptors for the changing residual pattern are shown in the scatter plot to the

left of the contour frame. The crosses depict a normalized skew factor which jumps from a low

(moderately skewed) to a high value at the same time that a low (flat peak) kurtosis measure returns

to a nominal level as shown by the open circles. The change in the pattern was caused by a

relaxation of the tight data editing criterion applied to the earlier observations which clipped the

distribution and muted the intrinsic asymmetry exposed with more liberal editing, The standard

deviation of the" full-rate data is recorded with the normal points in the currently adopted

compression scheme, so this event would be flagged as an increase in noise level, but the skew and

kurtosls shape factors provide improved diagnostics at a relatively low computational cost.

The cause of any data asymmetry can be lsolated by inspecting the distribution of the calibration

measurements: if the asymmetry is restricted to the satellite returns, the shift in the effective range

measurement due to the editing change would amount to over a centimeter and would cause an even

larger change In the apparent height or a station position determined from these observations. On

the other hand, similar levels of asDnmetry in the ground target returns would suggest a source in

the detector rather than the satellite, and if the same editing scheme was used for each data type,
there would be no bias in the satellite measurements.

Satellite and Calibration Target Data

We have considered the shape of distributions from calibration and satellite targets in an

analysis of observations from six GSFC systems collected in early 1992. Figure 4 shows a collage

of residual histogram contours from the systems tracking several different satellites: ERS-I{E),

Starlette(S), LAGEOS(L), Ajisai(A), ETALON-I(E 1), and ETALON-2(E2). This broad representation

shows at a glance the higher noise level of the ETALON satellite returns, as well as the tight
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precision of data from lower-orbiting satellites like ERS-1, which amounts to about 5 millimeters
for MOBLAS-7. The same ten millimeter bin scale is used to describe the characterlsties of these

instruments as for the data from Grasse in the earlier example.

The patterns for the appropriate calibration passes are given In Figure 5: they show less variation

than the satellite data, and allow us to discriminate satellite-dependent variations from detector

characteristics. None of the systems depicted here shows a systematic bias of more than a

millimeter, but subtle effects in the distribution for an individual system can be detected and

quantified by the skew and kurtosis shape factors plotted in the Figures provided for a couple of

the instruments. The satellite returns for Moblas-7 show no consistent kurtosts but a hint of the

positive skew typical of all systems' observations of the ETALON satellites (at the bottom of the plot);

the MOBLAS-7 calibration returns are slightly clipped (low kurtosis). On the other hand, TLRS-4's

satellite returns show no significant skew, but indicate a hint of clipping; this instrument's

calibration data possesses the rare property of slight negative skewness.

Summary

The effects of these idiosyncrasies in residual pattern for the GSFC systems is well below the

accuracy threshold for any currently employed application of the data, but they could be used to

characterize subtle changes in system characteristics. We have attempted to demonstrate in the

above examples tl_e enhanced ability to monitor data quality for any SLR system with some simple

shape factors which can be computed economlctilly in the normal point compression stage. Regular

inspection of these parameters can flag changes In data characteristics which affect range accuracy,

and also provide reassurance that our most advanced systems do indeed attain the millimeter

accuracy of which they are capable.
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N94-15560
SLR Data Screening; location of peak of data distribution

A.T. Sinclair

Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ, England

1. Introduction

At the 5th Laser Ranging Instrumentation Workshop held at Herstmonceux in 1984 consider-

ation was given to the formation of on-site normal points by laser stations, and an algorithm
was formulated. The algorithm included a recommendation that an iterated 3.0 x rms re-

jection criterion should be used to screen the data, and that arithmetic means should be

formed within the normal point bins of the retained data. From 1990 September onwards

this algoritm and screening criterion have been brought into effect by various laser stations

for forming on-site normal points, and small variants of the algorithm are used by most

analysis centres for forming normal points from full-rate data, although the data screening
criterion they use ranges from about 2.5 to 3.0 x rms. At the CSTG SLR Subcommission _

working group was set up in 1991 March to review the recommended screening procedure

The working group consists of A.T. Sinclair (chairman), G.M. Appleby, R.J. Eanes, P.J.

Dunn and T.K. Varghese. This paper has been influenced by the discussions of this working
group, although the views expressed are primarily those of this author.

The main thrust of this paper is that, particularly for single photon systems, a more im-

portant issue than data screening is the determination of the peak of a data distributioll.

and hence the determination of the bias of the peak from the mean. Several methods of

determining the peak are discussed.

2. The effect of skew data

The first stage of forming normal points (described by Appleby in these proceedings) is to

fit a trend-function to the raw ranges or to their residuals from a predicted orbit so that all

signature from the orblt is removed, _d then the distr_but:ion of the trend-removed data

can be examined. Some level of screening is needed in the]terative process of fitting a trend-

function, but this is not critical; 3.0 x rms or perhaps even tighter should be fine, and finally
a wider band of trend-removed data, say 5:0 x rms, should =_e:retained for examination of the

distribution and then final screening, if these :data have a symmetrical distribution about

the peak then the criterion used for final screening is not critical, and a 3.0 × rms screening
and use of the arithmetic mean should be fine. However if the data have a skew distribution

then the arithmetic mean will be biased away from the peak, and the amount of bias will

probably be dependent on the level of final screening used.

Analysis of the raw data from numerous stations shows that stations operating at a multi-

photon return level per shot tend to have a fairly symmetrical distribution of data, wherea_

those operating at a single photon return level frequently show a significant skewness in the

distribution of the data, usually skewed towards long ranges. As is described in papers b:_

w

_=

z
[]
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Appleby and by Kirchner in these proceedings, some satellites (particulary Ajisai) impose

their own signature on the laser data and can cause skewness as has been detected by some

single-photon systems. However it is probable that some of the skewness is caused by the

laser systems themselves, and it is certainly not the intention to explain away features of

the system as being due the satellite. However if the skewness is due to the satellite then
a means must be found in software of handling it. If it is due to the system then one view

is that it is an engineering problem and that the hardware should be adjusted, but another

view is that hardware will never be perfectly adjusted, and that one should accept some

level of real-adjustment and calibrate the effect out with software. Also it is possible that

some detectors such as avalanche photo-diodes have an inherent skewness which would be

very difficult to remove by adjustment of the hardware.

Systems which operate at a multi-photon return level and use pulse-level detection are in

effect using hardware to form a mean of the individual photon returns obtained each shot,

and so will see little effect from the distribution structure of the individual returns. Systems

which operate at multi-photon level and detect the first photon received will primarily see

the leading part of the distribution and will see little effect of any skew tail. Hence these

system use a hardware method to eliminate any effects of satellite signature, and must ensure
that the hardware is set up so as not to cause any biases. The objective of this paper is to

devise an equivalent software scheme for systems operating at single photon return levels.

3. Choice of reference point of data distribution

The current recommendation is that the reference point of a data distribution should be the

arithmetic mean of the' data retained after a 3.0 x rms screening. This may not be ideal for

a skew distribution of data.

If a skew data distribution is entirely caused by the laser ranging system, and if the ranges

to the terrestrial calibration target have the same skew distribution as the satellite ranges.

then it probably does not matter what screening criterion is used, provided the same is

used for both calibration and satellite ranging, and it will probably be satisfactory to take

the arithmetic mean of the data, even though this does not give the peak of a skew data

distribution. However if the satellite is adding a significant contribution to the distribution,

or if for some other reason the distributions of calibration and satellite data are different,

then it is probably best that some means of processing the data should be devised such that

the peak can be located. This is because, in the complicated coxivolution of the signatures of

the system and the satellite, the range represented by the peak corresponds to the distance

travelled by a photon from the peak of the laser pulse to the peak reflection point of the

satellite (and so the centre of mass correction for the satellite should be that corresponding

to peak reflection as determined in pre-launch testing).

Note that for a satellite pass it is not the peak of the trend-removed data for the whole pass

that is required, but the peak of the distribution of the data within each normal point bin.

This is a problem as there may not be sufficient points within a bin to give a reasonable indi-
cation of the distribution. The solution we recommend is that both the peak and arithmetic

mean of the whole pass should be determined, and the difference, or bias, of the mean from

the peak shouM thus be determined for the whole pass. Then within each normal point bin
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just the arithmetic mean should be determined, but it should be corrected by applying to it
the bias of the whole pass.

4. Methods of determining the peak of the data distribution

The usual method to determine the distribution of data is to plot a histogram, but this

by itself does not give a good indication of the precise location of the peak. There is some

arbitrariness introduced by the choice of bin width, and this is likely to be much coarser than

the resolution required for the peak. An improvement can be made by fitting a curve such

as a Gaussian profile to the histogram, but this total process is rather complicated, and as a

Gaussian profile is symmetrical it will to some extent be influenced by a skew data set and be

pulled away from the peak. In this paper we propose and examine three simpler techniques,

and compare their performance on a variety of passes tracked by RGO Herstmonceux.

4.1 Data smoothing

After fitting and removing of a trend flmction, a plot of the data against time should be just

a scatter plot about the mean, exhibiting no trend, but possibly not uniformly distributed

about the mean. In order to examine this distribution we no longer consider the data as a

time series, but just as points as lying along an x-axis, and our requirement is to plot in the

y-direction some function describing the distribution of the points. The usual procedure is to

plot a histogram, but we consider an alternative, in which each plotted residual is regard(.d

as the most probable location of the measurement, and so we spread (or smooth) the eff(,cr,

of the residual each side of it using a Gaussian probability distribution. The result is that at

any given location on the x-axis there will be contributions from all of the residuals, which

can be summed and plotted on the y-axis. The peak of this plotted curve will give the most

probable mean value of all of the residuals. The mathematical description of the method is

very simple. Let xi, (i = 1,n) be the residuals of the range values from the trend function.

Then for a range of values of x at, say, 10 ps intervals, evaluate and plot the quantity y,
given by:

n

y=k Z :-Ix-
I

i=l

where a is the somewhat arbitrary standard deviation of the smoothing function, although

it would be reasonable to choose a value close to the single shot precision of the system. We

regard the scale of y as arbitrary, and k is an arbitrary factor chosen to give some convenient
maximum value of y.

Figure 1 shows a series of plots of this distribution function for a pass of Ajisai for a range

of values of a, with the conventional histogram plotted also. Apart fi'om very small values

of a the peak is well-defined, and can be determined precisely. These plots are centred on

the arithmetic mean of the distribution, so it is seen that the peak differs fi'om the mean by

about 2 cm, showing the large effect of the skewness (which is primarily caused by Ajisai -
see paper by Appleby in this proceedings). A problem with the method is that the location

of the peak depends on a. As a is increased the skewness has an increasing effect on the

location of the peak, and in the plots the peak moves to the right by 2.3 mm as a varies

from 40 to 80 ps. A further problem is that for very sparse passes, possibly affected by a

=

_!

z
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significant amount of noise, the method fails to give a single main peak, or requires a large

value of a in order to do so.

4.2 Tight rejection criterion

The arithmetic mean of a set of data will be biased away from the peak due to any skewness of

the data, but the amount of bias will be reduced if a tighter rejection level is used in forming

the mean. We look at the effect of using various rejection levels, expressed as multiples

of the root mean square difference from the mean (rms). However the rms of the retained

data varies and usually gets smaller as the rejection limit is reduced, so for clarity we first

determine the mean and rms using a 3.0 × rms iterated rejection level. Then subsequent

rejection levels are expressed as multiples of this fixed rms. It also aids convergence with a

tight rejection level if the rejection level itself does not vary as the iterations proceed. The

table below gives the results of using various rejection levels on the Ajisai pass shown in

Figure 1, with the various determinations of the mean given relative to the mean obtained

using 3.0 x rms rejection.

Rej. Mean(era) No.Pts.

3.0 x rms 0.00 1104

2.5 x rms 0.19 1081

2.0 x rms 0.58 1030

1.5 x rms 1.18 936

1.0 × rms 1.72 799

0.5 × rms 2.13 501

The peak of the distribution, as given by the smoothing method, is about 2 cm from the

initial mean, and it is seen that the successive estimates of the mean move closer to the peak

as the rejection level is reduced. For the rejection level of 0.5 × rms a large number of points

have been rejected, and also in tests on various passes some difficulty was experienced ill

obtaining convergence. So for subsequent tests we have adopted a level of 1.0 × rms.

Objections that are frequently raised to using a tight rejection level are that too much data

is being discarded, and that the data are being made to look better than they really are.

However what we are proposing is that this tight rejection level is used only for the purpose

of obtaining an estimate of the peak of the pass distribution, so that the bias of the peak
from the 3.0 × rms mean can be determined. The means in the normal point bins and the

value of the rms of the whole pass will be calculated from the data that remain after making

a 3.0 × rms rejection.

4.3 Pearson curves

A distribution of n points xi with mean 2 is characterised to a large extent by its moments

#2, #3, #4 where

• n

= - zi - x')J
#J n
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The second moment is the square of the standard deviation. The following quantities are
also defined:

Skewness 2 3= /%/g2 indicates deviation from symmetry, = 0 for symmetry about

Kurtosis =/z4/_t_ 2 indicates degree of peakiness, = 3 for Gaussian distribution.

These quantities are dimensionless and of restrained magnitude, and so are in some appli-
cations more convenient than the 3rd and 4th moments. This conventional definition of

skewness has the disadvantage that the sign of the 3rd moment is lost, and it is this which

describes the direction of the skewness. (It may be better to define skewness as _3/_/2.)
In the plots in this paper we attach the sign of the 3rd moment to the skewness.

There is a method in statistics of deriving a distribution function from values of these three

moments obtained from a set of data. These are the Pearson distributions (see description by

M.G. Kendall, The Advanced Theory of Statistics, Vol 1, 1947). The distribution function

f of the quantity :r is defined by a differential equation

df (x-a)f

dx bo + bl x + b2x 2

where

a = -I,3(1t4 + 3#_)/A

bo = -#2(41,21t4 - 3#])/A

bl = -t'3(/0 + 3#22)/A

b2 = -(2tt2P4 - 31t32 - 6tz32)/A

.4 = 10#4#2 - 18#,_ - 12#2

and where the origin of x is now at its mean value. The peak of the distribution curve is at
x=a.

This differential equation has several forms of analytical solution depending on the values of

the moments. For values likely to be met in practice its solution is of the form

f = k(1 + _-] )"'(1 - x---) TM
a2

but for the precise values of the moments corresponding to a Gaussian distribution this

solution becomes singular, and it has an alternative solution which is in fact the Gaussian

distribution. So unfortunately the analytical solution is close to a singularity in the region

likely to be met in practice, and so is not a very useful way of deriving the shape of the

curve. However it is easy to solve the differential equation by numerical integration starting

from the peak, although there can be problems as the singularity on the x axis is approached
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which require a little fudging. Some solution curves are shown in Figure 2 for a range of

values of skewness and kurtosis. No attempt has been made to normalise the area under

the curves; they are all plotted with the same height at the peak. It is seen that the shapes

of the curves are close to a Gaussian curve until fairly extreme values of the parameters

axe reached, eg., skewness of 0.6 or kurtosis of 2.2, and then the shapes are not particulary

typical of what is seen in some SLR data, and so it can be expected that this method will

give a good estimate of the peak for distributions close to Gaussian, but not be so useful in

more extreme cases.

This discussion of how to plot the Pearson curves is given here for completeness, but it is

not proposed that this should be a normal procedure for SLR data handling. However the

method provides a simple estimator of the location of the peak of a. distribution of data.

Expressed in terms of the standard deviation _r, the skewness s, and the kurtosis k, with

consideration given to the sign of the 3rd moment, the displacement of the peak from the

mean is

-sl/2a(k + 3) x sign(It3)

lOk - 18 - 12s

5. Comparison of methods of peak determination

Figure 3 shows the results of applying these various methods of peak determination to a

number of passes tracked by RGO Herstmonceux. The passes were selected to provide a

good test of the methods, and are not necessary typical passes from the station. The figures

give the following information:

• the conventional histogram, using a bin of 40 ps (= 6 mm)

• the smoothing-method distribution function plotted as a solid curve

• the Pearson distribution function plotted as a dashed curve

• the 3 × rms-rejection mean shown as a solid vertical line from the top

• the 1 × rms-rejection mean shown as a dashed vertical line from the top.

The two distribution curves are plotted with slightly different peak heights for clarity, and

the peak height of the histogram is limited if necesssary to be slightly below these two curves.

The information 'given in the captions includes:

• Smoothing parameter cr in ps (multiply by 0.15 to get mm)

• Bias(l): difference of smoothing-method peak from 3 × rms mean

• Bias(2): difference of 1 × rms mean fi'om 3 × rms mean

• Bias(3): difference of Pearson peak from 3 × rms mean.

Figures 3(a) and 3(b) show passes with insignificant skewness, in which all methods of

determining the peak and mean agree well.
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Figures 3(c), 3(d) and 3(e) show passes with significant skewness, in which smoothing,

Pearson and 1 x rms agree well, but axe significantly different from the 3 x rms mean.

Figures 3(f) and 3(g) show passes in which smoothing and 1 x rms agree well, but the Pearson

peak stands off, and all differ from the 3 x rms mean.

Figures 3(h) and 3(i) show passes in which the Pearson peak and 1 x rms agree fairly well,

but the smoothing peak stands off.

From these and tests on numerous other passes we conclude that:

• for a single-photon station there is often a significant difference of the peak from the

3 x rms-rejection mean

• the 1 x rms-rejection mean usually agrees with one or other of the smoothing peak

and Pearson peak, and often with both.

6. Recommendations

In conclusion we recommend the following:

a) the ranges to a calibration target or the trend-removed data from a whole satellite pass

should be screened at an iterated 3 × rms level, and in the process determine rms and mean

of the retained data

b) the skewness and kurtosis of the retained data should be determined

c) using this fixed value of rms a second determination of the mean should be made using

an iterated 1 × rms rejection. This provides an estimate of peak. Then the bias of the

calibration or pass is bias = peak - mean

d) for a calibration run, use the value of peak as the calibration value

e) for a satellite pass, form normal points from the screened data within each bin in the

usual way, but add the correction bias to the normal point.
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Figure 1. Use of the smoothing method to determine the distribution of an

Ajisai pass.
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ABSTRACT.

A median (Ll-norm) filtering program using polynomials was

developed. This program was used in automatic recycling

data screening. Additionally a special adaptive program

to work with asymmetric distributions was developed.

Examples of adaptive median filtering of satellite laser

range observations and TV satellite time measurements are

given. The program proved out versatile and time saving

in data screening of time series measurements.

i. INTRODUCTION

The advantages of data screening of satellite laser range

measurements using median (or Ll-norm) instead of least

squares were shown earlier (Paunonen 1989). The median is

known to be insensitive'to outlying observations, which is

a useful property in preliminary data screening of any
time series measurements. Asymmetric distributions often

arise for various reasons; saturation of the laser detector

and the receiver electronics, laser prepulses etc. This

cannot be easily treated with least squares methods.

In response to multiple needs, a median program permitting

use of a higher order polynomial of up to ten was developed.

A second version used automatic recycling of the fitting loop

until a specified fit was obtained and a special program to

work with unsymmetric distributions was devised. Examples
of screening satellite laser range observations and TV

satellite time measurements are given.
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2.1 MEDIAN PROGRAM

The median program was constructed with the Fortran-

procedure published by Barrodale and Roberts (1974),

modified for polynomial use. The function to be minimized

in the overdetermined case is

M

_"lYil - a - a x - a2 x2 N Io 1 i i - "'" - aNxi
(1)

where Yi are the observations, xi the observing times (here),

M the number of observations and N the degree of the

polynomial to be fitted to the observations, and aj (j=0...N)
the coefficients of the polynomial.

2.2 AUTOMATIC MEDIAN FILTER PROGRAM

A versatile data screening program should be able to run

automatically, without any manual interface. The median is

good basis for a filtering program, because it selects reliably

the densest part of the measurements as a reference. This means

that any erratic points, that is out[iers, are of true size, and

not evened out as in the least squares method. Operation of the

sequential median filtering program is started by forming the

residuals of all the observations and calculating their average.

Observations below a certain rejection limit are selected

for the next cycle only. The problem is to find a suitable
limit which is neither too inclusive nor too exclusive. Good

operation was obtained by using the rejection level, R,

R = 3.5 * AVR , (2)

where AVR is the average of the residuals in the earlier

round. For a Gaussian-shaped distribution the width between

the zero and the point corresponding to one standard

deviation is 1.46 times the width corresponding to the

average. Thus the limit used is roughly equivalent to 2.4

times the standard deviation used in the least squares

method. The repeated rounds are limited to four, but the

final selection is generally ready after three rounds.
°:

2.3 ADAPTIVE AUTOMATIC MEDIAN FILTER PROGRAM

In practice, the distribution of the data may be asymmetric

and may include separated peaks. In satellite laser ranging,

a distribution as shown in Fig.l can easily arise with mode-

locked lasers. The transmitted pulse may contain a small

prepulse if selection of a single laser pulse from a train

of mode-locked laser pulses is incomplete. Even if the

parasitic pulse is small, it causes stops in the photon

counting mode. This poses difficulties for normal

screening methods using least squares. Use of only

2-45



PREPULSES
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Fig. i. An asymmetric distribution of possible range
residuals in satellite laser ranging.

a two sigma-limit (Appleby and Sinclair 1991) is possible,

but it may also fail if the contamination is severe.

The median is expected to perform better because it finds

the location of the main pulse more easily. The main part

may also show unbalanced distribution (skewness) due, for

instance, to saturation effects in the receiving

electronics.

A modified method for asymmetric distributions is proposed

as a refinement of the median filter described. Because

the median produces separate average values for positive

and negative residuals, AVR+ and AVR-, respectively, the

program is allowed to select a minimum of the absolute

values, and use it as the basis for the rejection limit

in Eq.(2), ,

AVR = Min(IAVR+I,IAVR- I)

At least mild skewness will be corrected in this way.

If the distribution is symmetric, operation is normal.

(3)

3. TESTS OF THE ADAPTIVE MEDIAN FILTERING

The first test set was obtained from satellite laser

range observations to the distant LAGEOS- satellite

at Mets_hovi, Fig. 2a. This is a mixture of good and bad

observations. The points on the shorter range side arose

from the shape of the laser pulse (Paunonen 1989).

The short 4.5 ns pulse was cut by an electro-optical

shutter from a 20 ns long ruby laser pulse. However,

the shutter operation was not perfect and sometimes some

leakage due, for instance, to changing temperature, may have

occurred. This leakage, which was less than i0 per cent, looks

like a pedestal on which a short pulse is riding.
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Fig. 2. a) Unscreened range residuals in a LAGEOS pass
b) Range residuals after adaptive median filtering

(linear fit).
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The energy ahead of the main pulse may stop the time interval

counter. The adaptive median filter selected 22 observations

from the 33 available ones (Fig. 2b). The initial data set is

not random, because similar results were also obtained at the

calibration line. The result is also plausible, because its

width corresponds to the laser pulse width. The earlier

method for testing one observation at a time (Paunonen 1982)

would be of little value, without knowing what to seek.

Another test set originated from recent TV satellite time

measurements (Fig. 3a). Here the second tick from the station

clock started the time interval counter and the horizontal

syncronization pulse from a satellite TV receiving system

(50 Hz rate) stopped it. The large number of badly timed

pulses propably originated from the encrypting method

the TV transmission (program RAIUNO on the EUTELSAT I-F5

satellite) is using. This set was also cleared well with the

adaptive median filter (Fig. 3b). The r.m.s, value of the
residuals was Ii ns.

4. DISCUSSION AND CONCLUSIONS

The adaptive median filter has proved to be versatile and

to save time. It can safely remove several outliers, how-

ever large they are. This is a big advantage over the least

squares method, in which all large outliers must be removed

before any useful operations can be obtained. Polynomials

should be used with care also in median filtering.

End points in particular may behave peculiarly.

The median program sets the value of some residuals at zero

(this number is same as the degree of the polynomial),

which is artificial. The asymptotic estimation efficiency

of median is also usually worse than that of the

mean (Eadie, et.al.,1971). It seems therefore best to use

the median in the data screening phase and to use the normal

least squares method for final extraction of the results.

Use of the least squares is then well justified, because

the distribution of the screened data is nearly normal.
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New laser ranging capabilities, additional satellites, and changing

priorities are making it more difficult to determine the most efficient

method of operations for NASA's CDSLR Network. A software package called

SATCOP (Satellite Ranging Coordination Programs) has been developed to

assist in mission support and planning operations. Its uses range from

planning daily station operations to conducting pre-launch satellite

visibility studies. SATCOP provides a listing and graphics output of

satellite visibility for a given occupation site for any time period.

SATCOP may also be used to determine the optimum ranging scenario for a

station, taking into account satellite ranging priorities and station

operational requirements. Finally, SATCOP may be used to illustrate

simultaneous satellite visibility for multiple stations.

Introduction

As the CDSLR Network grows into the 1990's it is undergoing many

changes in both its capabilities and requirements. On the one hand great

progress has been made in terms of increasing the SLR systems'

performance. Upgrades to the onsite computer and improved laser ranging

hardware have greatly increased the number of satellite passes which can

be acquired during an operating shift by reducing the amount of time

needed for operations other than actual ranging. On the other hand, more

requirements have been placed on the systems. Many more satellites have

become available, with more scheduled for launch, thus increasing the

likelihood of simultaneous satellite visibility. In addition, the

possible scenarios required for ranging these many satellites are changing

frequently, with conflicting priorities and needs.

It became apparent that some tools needed to be developed to assist

the planners in determining Network ranging priorities. Such tools have

been developed at Bendix under the direction of NASA's Dynamics of the

Solid Earth Project (DOSE) for both long range planning and routine

operations to maximize the amount of data collected. This paper will

review some of these tools and describe their uses.
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The SATCOP software package has several parts which are used for both

routine operations and pre-launch scheduling. The use of such software

helps determine pre-mission requirements such as ground track

determination, forecasted station performance, predictions of optimum

system locations, and predicted satellite visibility. SATCOP also

produces graphs of ground tracks of acquired passes; determines

availability of simultaneous ranging opportunities; schedules operating

hours for maximum visibility; and produces automated single station

scheduling for daily station activities.

Figure 1 is a time plot of satellite visibility for a given station.

This figure demonstrates that even with just 6 satellites considered the

opportunities for laser ranging are abundant. Such plots, and others like

it, are used for operational scheduling of station activities and for the

determination of operational requirements for future missions or

locations. Typically such a plot is done for a 7 day period, but the

number of satellites and number of days is user determined. The plot

consists of a time scale in hours GMT across the top, and a day scale down

the left. A subscale of each day is present, dividing each day into a

line for each satellite. _Fofeach satellite, atw_ietter satellite

identiffer indicates the h0rizontal line across which the satellite could

be visible (refer to Figure 8 to identify the satellite associated with

each two letter identifier). Across the plot a solid line indicates when

a satellite is visible, and a total number of minutes for that day is

printed on the right. On the last day of the plot a column on the right

also indicates the total number of minutes visible during the time period
of the plot.

Figure 2 illustrates the number of possible sightings of two

satellites over a four day period at 5 locations. Such graphs are used

when extended time periods are considered, and can be used to compare

satellite visibility at several stations simultaneously. Such graphs are

useful for determining the best of several possible station locations and

the expected visibility at a given location, and can include several

satellites. Often it is also desired to know the number of possible

simultaneous sightings of a satellite for several locations. Figures 3

and 4 demonstrate the tools used for determining this number. Figure 3 is

a matrix showing the number of mutual sightings possible at several

locations. The number of such sightings for a given pair of stations is

found by cross indexing between the two desired stations to find the

result within the matrix; as an example for MOBLAS 4 (7110) and MOBLAS 8

(7109) the number of such sightings is found to be 130. Figure 4 is a

listing of all possible subsets of the desired stations which can range,

along with the times of mutual availability. The user can determine the

minimum number of stations desired for simultaneous ranging, and the time

period for consideration.

The SATCOP software package has been developed to provide support for

other purposes as well. Figure 5 is a plot which shows the distribution

of acquired LAGEOS passes reported as quicklook data for the time period

May 2 to May 14, 1992. This type of plot allows the user to quickly
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determine the geographic distribution of data reported during the

indicated time period. Figure 6 is used to compare sightings for two or

more stations over a 24 hour period, and is read similarly to Figure 1.

Such a graph is convenient for quickly determining the opportunities for

coordinated activities between two or more locations with one or more

satellites.

A major use for the SATCOP package is single station scheduling for

daily activities. The purpose of such scheduling is to assist the station

crew in conducting laser operations by considering as many of the

requirements and opportunities presented to the station as possible, and

then producing a schedule which is a possible 'optimum' solution for the

day's activities.

To perform such scheduling many parameters are considered. A major

requirement is to resolve ranging opportunities when two or more

satellites are visible simultaneously. SATCOP considers satellite

priority, ranging limitations such as a maximum time limit on a satellite

pass, and day or night ranging restrictions. If two satellites of the

same priority are available then the software ensures that ranging is as

evenly distributed between the two during the day as possible, based on

available minutes of data. Activities which may exclude laser activities

are taken into account, such as data preprossessing and calibration time.

If the system has the multi-satellite calibration capability then the

software determines a best sequence for calibration and ranging.

As an example a schedule generated for MOBLAS 4 at Monument Peak will

be considered, using the time period covered by Figure 1. Some of the

parameters used for generating the schedule are illustrated in Figures 7

and 8. As an aid to readability only two days will be scheduled, but

normally a regular workweek is considered. The hours of operation were

determined previously using other methods described earlier. From this

information the schedule sent to the station is graphically shown in

Figure 9. Looking at the plot for each day there is a line corresponding

to each satellite plus an additional line showing laser.calibration,

denoted by 'C1'. Since this system is using the multi-satellite

calibration capability data may be acquired on several satellites between

calibrations. Also, since the overhead time has been greatly reduced by

this, and other, upgrades true interleaving of passes is possible when a

high priority short pass occurs at the same time as a low priority long

pass. The thick line represents the time that the station is actually

ranging (or calibrating), while the thin line represents the time the

satellite is actually visible (the thick line corresponding to the ranging

of a given pass is located above the thin line).

Conclusion

In the future the requirements for SLR activities will only become

greater. New satellites, new ranging scenarios, and new station abilities

will require changes to be made to the methods used to schedule

operations. Recent examples are the ETALON campaign and the multi-
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satellite upgrade. Of course, many possible parameters have yet to be

considered. Obviously it is impossible to account for poor weather

conditions deterring laser activities on a given day, but plans are being

considered to include long term weather effects as a statistical

modification of the predicted station performance. And it would be

similarly difficult to account for system down time due to component

failure. But the use of this package, and its continued improvement, has

allowed Bendix to more efficiently coordinate the NASA CDSLR network

activities.
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