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Satellite Signatures in SLR Observations
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Abstract.

We ezamine the evidence for the detection of satellite-dependent signatures in the laser rangc
observations obtained by the UK single-photon SLIt system. Models of the ezpected obser-
vation distributions from Ajisai and Lageos are developed from the published satellite spread
functions and from the characteristics of the SLR system, and compared with the observa-
tions. The effects of varying return strengths arc discused using the models and by czperi-
mental observations of Ajisai, during which a range of return levels from single to multiple-
photons is achicved. The implications of these results for system-dependent centre of mass

corrections arc discussed.

1. Introduction.

The UK SLR system sited at Herstmonceux, and run by the Royal Greenwich Observatory,
routincly observes the primary targets ERS-1, Lageos, Etalon-1 and -2, Starlette and Aji-
sai. The single-shot precision achieved by calibration ranging is close to 1 cm (1-sigma).
The detection and timing hardware has recently been upgraded to include a Single Photon
Avalanche Photodiode (SPAD, Prochazka ct al, 1990), and an HP 5370 timc intcrval counter.
Epoch is derived at present from a Maryland 4-stop event timer, which is also used to make
range measurements simultaneously and independently of the HP counter. Pass-averaged
return rates are in general fairly low, varying from a few percent from the Etalon satellites,
through about 20% from Lageos to up to 50% from Ajisai. Returns from the calibration
targets are deliberatcly kept to similarly low levels (about 10-15%) using neutral density fil-
ters in the laser path. Under such conditions we can describe the system as a single photon
return, single photon detection system. A detailed study of the system error budget was
carried out following the upgrade of the detector from a PMT. During this investigation it
became clear that the observational precision of in particular Lageos and Ajisai was consis-
tently worse than that of the calibration targets. It was considered likely that the spacial
distribution of the retroreflector arrays on the satellites would modify the distribution of the
range residuals, when compared with those from the flat calibration targets. In this paper we
examine the evidence for detection of satellite signatures in our range observations, compare
the observations with models of the expected distributions from a selection of those satcl-
lites regularly observed, and discuss the implications in terms of the appropriate corrections
required to reduce the obscrvations to the centres of mass of the satellites

2. Observations.

This investigation is based upon the pass-by-pass range residuals that are formed during



the preprocessing stage to compute on-site normal points. All trends in the residuals due to
errors in the predicted orbit of the satellite are removed during this process, which iteratively
solves for corrections to a set of orbit-related parameters, rejecting at each stage residuals
falling outside a 3-sigma band (Appleby and Sinclair, 1992, these proceedings). In a final
stage of pre-processing, and as a useful check on system performance, the residuals are used
to form a frequency distribution for each pass, by grouping the residuals in range bins.
A normal distribution is fitted to the observed distribution by iterative least-squares, and
the parameters of the fitted Gaussian are used to make a final selection of the original
observations. Examples of the observed distributions and their fitted Gaussian distributions
are shown in Figure 1. Also shown in the Figure is a typical distribution of ranges to a
calibration target board, distant about 600 m from the SLR system. The observed range
values are plotted relative to the mean of the fitted Gaussian djstributions, which are also
shown on each plot. The standard deviations of the fitted distributions are shown, along
with higher moments of the data, expressed as skewness and kurtosis. For a perfect Gaussian
distribution the values of skewness and kurtosis would be 0.0 and 3.0 respectively.
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Figure 1. Observed distributions of range residuals from calibration and satellite targets.
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2.1 Discussion.

From the distributions shown in Figure 1, we make the following observations. The distri-
butions of the calibration ranges and those from Starlette and ERS-1 are clearly symmetric
and well-fitted by the Gaussian distributions, but all have a significant ‘tail’ of observations
outside the fitted curves. Skewness values for these 3 targets are between 0.05 and 0.1. The
Lageos distribution is much less symmetric, and is less well fit by the Gaussian distribution.
A chi-square goodness of fit test indicates significant departure, at a 5% level of significance,
from the best-fit distribution shown in the plot. The results from Ajisai and Etalon 1 show
large asymmetry, and are not at all well fit by the Gaussian distributions. Of particular
significance to this investigation, are the ‘widths’ of the distributions, characterized by the
standard deviations of the fitted distributions. Mean values of these standard deviations for
a number of observations made during November and December 1991 are given in the Table
below. These mean values of standard deviations confirm the impression given in Figure 1,
that the calibration ranges have the smallest scatter, and those of Ajisai and Etalon-1 the
largest, the range of standard deviations being from 1.1 cm to 4.8 cm.

Target o
mm
Calib 11
ERS-1 12
Starlette 16
LAGEOS 18
Ajisai 32
Etalon 48

Before proceeding to investigate the hypothesis that satellite signatures are present in our
observations, we first consider the possible causes of the ‘tail’ in the distributions, particularly
evident in the calibration and Starlette data. We remark here that the existence of this tail
does not constitute the thrust of our argument that we are detecting satellite signatures in
our observations, since the tail is also present in the calibration ranges from a flat target
board. We must therefore rule out such a target-induced effect and consider as probable
cause the SPAD or the laser. In an experiment primarily designed to quantify the system
time-walk under a large range of return signal strengths, calibration ranging was carried out
using neutral density filters to vary the average number of photons reaching the detector.
In this way the average number of photons was varied from about 0.5 to 50 photons per
shot, as deduced from the observed return rates. A sclection of the results is given in
Figure 2, where the results are displayed in histogram form as before. The plots show, as
expected, a reduction in the standard deviations of the distributions with increasing signal
strength, since for a given laser pulse-width we would expect the contribution of the laser
to the observational jitter to decrease with increasing number of photons in the return
train, as the single-event detector increasingly receives photons originating nearer to the
leading edge of the transmitted pulse. The plots also demonstrate that the extent of the
tail in the distributions decreases with signal strength, suggesting an origin within the laser.
However Prochazka (1992, private communication), points out that correct optical alignment
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of the SPAD detector is essential to avoid possible effects of non-uniformity within the chip.
Resolution of this problem awaits further experimentation.

3. Satellite Signature Models.

We now take as our standard, single-photon system-signature the calibration distribution
shown in Figure 1, and develop from it models of expected satellite return signatures, by
convolution with the spread functions of Lageos and Ajisai. For Lageos, we take the model
of cross-section parameters based upon row-by-row far-field diffraction pattern tests in polar
orientation, presented in Fitzmaurice et al (1977). The parameters give, for the particular
orientation, the lidar cross-section and number of corner cubes, in rows, contributing to the
strength of returning signal. Also given is the optical distance of each row of reflectors from
the spacecraft centre of gravity. We use the effective cross section of the cubes in their
rings, of known distances from the centre of the satellite, to carry out a convolution of our
system signature with that of Lageos. In this estimate of the shape of the returning pulse
we ignore the effects of changing polarisation, which mainly affects the amplitude of the
convolved pulse, and not its shape (Fitzmaurice et al 1977.) To model the return signatures
from Ajisai we use the results of a computer simulation carried out by Sasaki and Hashimoto
(1987). They find that the number of retrorcflector sets contributing to the return signal from
a given single laser pulse can only be 1, 2 or 3.5, and give the computed pulse shape in each of
these 3 cases. The lascr used in their simulation is gaussian in profile, of standard deviation
33 ps. From the published profiles, we can infer the spread distributions, consisting of lidar
cross-scctions and distances from spacecraft centre of gravity. We now lhave the information
required to carry out a convolution with our system signature, in the same way as for Lageos.
We assume that the rapid spin rate of Ajisai, of 40 rpm (Sasaki and Hashimoto, 1987) will
ensure that for every pass all 3 possiblc orientations of the satellite will be sampled. We thus
convolve our system signature with each of the spread distributions, and sum the resulting

3 distributions.

The results of the simulations for Lageos and Ajisai are shown in histogram form in Figures
3(a) and (b), where the quoted standard deviations are those of the fitted Gaussian distri-
butions, also shown on the plots. For completeness we also present in Figure 3 the result of
convolving our system scparately with each of the 3 orientations of Ajisai.
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Figurc 3. (a) Simulatcd Lagcos range residual distributions.



of the SPAD detector is essential to avoid possible effects of non-uniformity within the chip.
Resolution of this problem awaits further experimentation.

3. Satellite Signature Models.

We now take as our standard, single-photon system-signature the calibration distribution
shown in Figure 1, and develop from it models of expected satellite return signatures, by
convolution with the spread functions of Lagcos and Ajisai. For Lageos, we take the model
of cross-section parameters based upon row-by-row far-field diffraction pattern tests in polar
orientation, presented in Fitzmaurice et al (1977). The parameters give, for the particular
orientation, the lidar cross-section and number of corner cubes, in rows, contributing to the
strength of returning signal. Also given is the optical distance of each row of reflectors from
the spacecraft -centre of gravity. We use the effective cross section of the cubes in their
rings, of known distances from the centre of the satellite, to carry out a convolution of our
system signature with that of Lageos. In this estimate of the shape of the returning pulse
we ignore the effects of changing polarisation, which mainly affects the amplitude of the
convolved pulse, and not its shape (Fitzmaurice et al 1977.) To model the return signatures
from Ajisai we use the results of a computer simulation carried out by Sasaki and Hashimoto
(1987). They find that the number of retroreflector sets contributing to the return signal from
a given single laser pulse can only be 1, 2 or 3.5, and give the computed pulse shape in each of
these 3 cases. The lascr used in their simulation is gaussian in profile, of standard deviation
33 ps. From the published profiles, we can infer the spread distributions, consisting of lidar
cross-sections and distances from spacecraft centre of gravity. We now have the information
required to carry out a convolution with our system signature, in the same way as for Lageos.
We assume that the rapid spin rate of Ajisai, of 40 rpm (Sasaki and Hashimoto, 1987) will
ensure that for every pass all 3 possible orientations of the satellite will be sampled. We thus
convolve our system signature with each of the spread distributions, and sum the resulting
3 distributions.

The results of the simulations for Lageos and Ajisai are shown in histogram form in Figures
3(a) and (b), where the quoted standard deviations are those of the fitted Gaussian distri-
butions, also shown on the plots. For completeness we also present in Figure 3 the result of
convolving our system separately with each of the 3 orientations of Ajisai.

I i l i I T I l | T ] | l 1 ]
. i i
5 60— —
'*5 - c =17 mm -
> - .
£ | _
1))
2 40 |- ~
O - -
S - i
¢ 20 |— _
el B .
£ - i
2
O _ 1 J N [ LI -J..l 1 I I |

Figurc 3. (a) Simulated Lagcos range residual distribution

2-6

[T e T TR

R



mNumber of Observations

Number of Observations

50

40

30

20

10

.LIJ!'I

20 30
Rangc Residual (cm)

40

30

140

120

100

80

GO

40

20

(a+b+c) T

30
Range Residual! (cm)
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3.1 Discussion.

The standard deviation of the simulated Lageos data (1.7 cm) is close to our observational
mean of 1.8 cm, and the appearance of the simulated and observed histograms is similar.
The underestimate of the observed scatter by our model may be attributed to various causcs;
neglect of atmospheric turbulence (Gardner, 1976); neglect of coherency fading induced by
the satellite, and the single satellite orientation chosen for the model. The models of the
Ajisai return signatures give standard deviations of between 2.3 and 3.3 cm, which compare
well with the observational results. There is some evidence in the Ajisai observations of
variations of signature with pass circumstances, which may be due to the dominance of a
particular satellite orientation or orientations for a given ground track.

4, Multi-photon Returns.

The foregoing discussion is based upon return energies at the single photon level; the detected
photon is considered to be a random event taken from a population formed by the convolution
of the laser pulse distribution with that of the satellite response. We now consider the cffects
of a larger number of photons reaching the single-photon detector, in order to quantify the
subsequent systematic cffects causcd by a signal-strength-dependent variation of the mean
reflection distance to the satellite.

4.1 Observations and reduction.

Experiments were carried out using Ajisai since it is relatively casy to obtain a large variation
in received energy from the large target. The variation from single photon to multiple photon
levels was achieved during the experimental passes by altering the divergence of the laser
beam and hence the cnergy density at the satcllite. The observations were filtered in the
standard way, by using them to solve for corrections to the predicted orbit. However, it was
found that this process did not remove all trends from the range residuals, indicating the
presence of systematic range biases which varied during the passes. We found that it was
necessary to divide each pass into a number (6) of segments, and usc the processing software
to filter the observations in cach segment separately. The resulting scatter plot for one of
the experimental passes is shown in Figure 4. The residuals from each of the six segments
are shown in histogram form in Figure 5, along with the standard deviations of the fitted
Gaussian distributions.

We calculate the average percentage return rates at intervals of 30 seconds throughout the
passes by counting the numbers of satellite returns and the numbers of pre-return noise
detections. Given that the laser fires 10 shots per second, the true percentage return rate in
each 30-second interval is then

(number of true range measurements*100)/(30*10 - number of noise events)

On the assumption that the quantum efficiency of the SPAD is 20%, we calculate from these
corrected return rates the average numbers of photons in each return. However we found
that in several of the 30-second intervals the calculated return rate was nearly 100%. At
such return levels we cannot reliably estimate the mean number of returning photons, which
may be far in excess of the 16 estimated for a near 100% rate. Where possible, we have
used these 30-second mean values to estimate the mean numbers of photons contributing to
the observations in our 6 segments, and these averages are shown in Figure 5. For those 2




Noo, s C ) .
°, 5
Lo * . -‘ p‘*‘cu’.‘ ‘1 ]
P o *°) LT oo
R AP
ey e NN i
LR XY LA A R L
- * \L.’.'.' *oatle . .
. vee .1 Py |
- . P o .\Ii
.:-o.:-o.. - e "‘?’.J.. .
* o LRee) *.‘
. -.f "J.;’ 4'..‘. .:..7‘ -
IR Do ]
o e .
. ALY 4,‘:"‘; -~ _
: R g
E c
- —
2 _
P
50 —
I~
LY
=4
[V —
[=]
-
3 —
pr}
¥
~
L0 —
g :
-
a] p—
©
P4
'c: i
=
=
-3 —
4
< —
[
o ——
w
W
«<
D‘ —q
=
-~
c —
Y]
g
-= B
L%
[«
A
v —
E
o —
=
n
‘G —q
=
-~
. = i
: =
[}
., gzo B
’ o
. . '
-
.
o’ - :..7. .. 342"{?“, g ]
i - . ‘. bo
., . . :‘:\‘k.::'}O‘ /3." ' 2 B
o o «®* ",~.'_‘o‘.ox-.‘...‘,...‘
. v ..0.'\' ".‘.‘,?..' -
: NS S CUIRRL O ‘. ]
e he % .‘o‘f‘ LY 4 ..!"fc e .
s ™ o..:..{-. o3 Sed e, 200
R A BN i
. 4 . Qo‘-‘ os © '1 . -
* M - 3 LI LI
H - ‘e or".‘o.f~ .'..
L L

(wd) [enpisay aguey

2-9

2200 2300 2400

2100

Time (s)

1900 2000

1800



Number of Observations Number of Observations

Kumber of Observations

100

l4nllll|l|Illil!llllllliTlllllA!
120 n=2~6 o = 28 mm

100

I"I'lllll]’

-]
<

40

llIlllllllllllllllllllllll

lll](-lllnllrlt

PN L 4 | S I N T

S -10 -5 Y] 5 10 15

1o
—_

—_
Yy
<

lllllllll'llllI|I|'ll|l||l|l|

v = |G

&
S

ny>l6

100

.|,.,|.n||||;|111

GO

40

20

lllllIQ‘TII'I|IIIIIIIII'ITT

]
g

L _ NI T | TS Wy
S.-10 -5 0 5 10 i

1
-
2]

[

140 LI L L SN L AL B O B B

1

120 n = 15 o= 16

llxn[llllIT

(-3
=]

||'!1||]A1A’|.

-]
=]

Ill‘lllllll]lll

40

20

[+] FEVER O ST SR ATE U1 FRPUS SRR W B

-15 -10 -5 [ ? 0 15
Range Residual (cm

Figure 5. Distribution of range residuals from Ajisai pass as a

turning photons.

2-10

>
o

L AR AL L LRI S R B B

120 n=9 o =20 mm

a0

60

8
Ilfl’llll[lllllller

40

20

A .4 N W NPT I

||IlllIIIA!IIIL'IIIIAIIIIII

-10 -5 - 0 S 10

1
—
Ll

@

lll]‘llil'lllI“Il'l'llli‘ll'

| BRI

120 n>16 o =13

100

ac

[114) N
40
20 '
N I T P L Y PP

r||1r¢|rrx|||rlsr|llvl

0
-5 . -0 ~0 ] 5 {0

IS BTN ST

-l

:

140 LA LI NN LA L B A S

= 18

L

-5 1] 5
Range Residual (cms

120

AL
=
It
Lie}
<

100

8o

G0

40

20

llllllfllll[r.l“.r

10

A_L_I_L.Lj

IS IR

o

function of average numbers = of re-




segments where the average return rates were near 100%, we have asigned the numbers of
photons as >16, but remark that the true numbers could be several times as large.

4.2 Model and Discussion.

There is a clear variation of histogram shape and single-shot precision with change of signal
strength. At low return rates equivalent to single photon returns, the distribution of residuals
is similar to the ‘standard’ Ajisai distribution (Figure 1). For the high return rates little
of the satellite signature remains in the distributions, and the histograms qualitatively and
quantitatively resemble those from Starlette or ERS-1 (Figure 1).

These results cannot be used to detect a systematic variation of satellite mean reflection dis-
tance during the passes, because the method of reducing the observations absorbs any such
corrections. However we can use models to predict both the increase of precision and this
change of mean reflection distance as a function of numbers of photons in each return. We
model the time-distribution of the returning photons, from which we may sample a variablc
number, by convolution of the Ajisai spread distributions with a Gaussian distribution of
FWHM 50 ps, to represent the laser. To modecl the effect of n photons reaching the detector,
we use a random number generator to pick onc ‘photon’ from our time-distribution of pho-
tons, then record its time-location within the distribution, and repeat the process n times.
We then sort this sequence of n relative event times into chronological order of arrival at the
detector. We model the 20% efficiency of the detector by stepping through the n events in
time order, at each step generating an integer random number in the range 1-5. If the ran-
dom number is 1, the event is accepted (detected). If the random number is not 1, the next
event is ‘tested’. In this way we generate a large number of event times each resulting from
the selection of a single photon from a scries of returns containing an average of n photons.
The mean and standard deviation of these cvent times are computed and converted to range
in cm. The standard deviation values are added quadratically to the estimated system jitter
(0.8 cm) to fully model the observations. The results of simulations of range precision and
biases from Ajisai for values of n between 1 and 50 are shown in Figures 6a and 6b, where
the results have been joined by continuous lincs. The 30-sccond average observed values
of precision, where they can be reliably cstimated (sce section 4.1) from our experimental
Ajisai passes, are shown as dots on the graph and agrec well with those predicted. The
predicted range bias curve in Figure 6b expresses the expected change of mean reflection
distance from the satellite centre of mass as a result of increasing the number of photons
reaching the detector in each laser return. Most of the bias, which contains a contribution
from the finite pulse length of the laser (FWHM 50ps), is scen to take effect between signal
strengths at the single photon level up to an average of about 40 photons per return. Little
change is predicted with increasing numbers of photons beyond that point.

4.3 Lageos Centre-of-mass correction.

We can use the above techniques to estimate the magnitude of a systematic range-bias for
Lageos, in the context of worldwide SLR systems working at different return-signal levels.
Figure 6 shows the rcsults of a computation of the range bias as a function of avcrage
number of photons reaching the detector, for 2 modelled laser pulse-lengths. The magnitude
of the change of the effective reflection distance from the satellite centre of mass is about
1.3 cm for a variation of return level from single-photons to the 40 photon level. This result
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implies that an SLR system receiving and detecting single photons, and using a laser with
a pulsewidth (FWHM) of 50 ps, is on average effectively observing a distance 1.3 cm closer
to the satellite centre of mass than a single-photon detection system receiving more than
about 40 photons per shot. Removing from this figure the effect of the length (FWHM) of
the laser pulse, the satellite-induced range bias amounts to about 0.6 cm. The recommended
centre-of-mass correction for Lageos is 25.1 cm for lcading-edge, half-maximum detection of
a large return pulse, and 24.9 for peak detection (Fitzmaurice et al, 1977). We assume that
the electronic detection of the peak of a large return pulse is equivalent, in terms of distance
from cenre of mass, to the formation of the mean of a set of range residuals arising from
the detection of single photons. For the Herstmonceux system working at the level of single
photon returns, the appropriate centre-of-mass correction should therefore be the same as
for the large-pulse, peak-detection systems, ic 24.9 cm. However, for single-photon systems
departing from the single photon regime, the implications of this investigation are that the
centre of mass correction should be increased from the 24.9 cm by an amount as given in
Figure 6, depending upon the laser pulse-length and the number of photons rcaching the

detector.

5. Conclusion

Using observations from the UK single-photon SLR system, we have demonstrated that the
observational scatter contains a satellite-dependent signature, and that this signature varies
as expected with the number of photons reaching the detector. The implications of this
variation upon the corrections required to relate range observations to the centres-of-mass
of the satellites is modelled and discussed. The magnitude of the cffect is system-dependent
since it depends both on the number of pLotons rcaching the detector, and hence on lascr
energy level and local atmospheric conditions, and upon the laser pulse length. A graph is
presented giving a calculated, energy and pulse-length dependent, center of mass correction
for Lageos range data obtained using single-photon detection, which varies by 1.3 cm over
the range of the parameters considered.
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Abstract

The size and shape of the satellites retroreflector arrays
have a major impact on the distribution and scatter of the return
signal; this can be seen clearly when reaching sub-cm ranging
accuracies and when using Single-Photon Detectors with single- or
multi-photon returns; for other receiver systems (using MCP’s) it
should be checked also. As a consequence, the necessary center-
of-mass correction for some satellites will different, depending
on the receiver systems.

While this effect is not yet visible on small satellites or
small retro-reflector arrays (like STARLETTE, ERS1), it can be in
the order of centimeters on AJISAI or ETALON.

1.0 Introduction

The SLR station Graz uses, since some years, Single Photon
Avalanche Diodes (SPAD) to detect return signals from satellites;
these diodes can detect single photons - which is used for
ranging to ETALON, or, in worse atmospheric conditions, also for
jower satellites -, but usually we use multiphoton returns to get
maximum return rates; this results in better accuracies when
using Normal-Point-Methods, and helps to avoid part of the
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satellite signatures in the return signal distribution, as
described later.

2.0 Ranging tests to the calibration target

Standard calibration to our target (distance about 400 m)
gives an RMS of 6 to 7 mm for the routine SLR setup (with HPS5370A
counter, SPAD at 10 V above break, cooled to -27°C; 2.50 limits);
an example is shown in fig. 1, upper histogram; the distribution
shows nice symmetry, with an RMS of 5.8 mm at 2.5¢ ¢+ there is no
significant change of the mean value when using different sigma
criteria, also indicating a proper distribution.

To check influences of the ranging system itself on the
distribution of the return signals, different tests with various
misadjustments of the involved devices were made; a worst-case
example is shown in fig. 1, lower histogram: A similar calibra-
tion as before, but with misaligned SPAD, lower voltage above
break, no cooling, and non-optimum start puls detection: this
results in a non-symmetric distribution, higher RMS, and measu-
rable shift of the mean value for varying sigma criteria.

After verifying the maximum contribution of the system itself,
the distribution of returns from different satellites were
analyzed.

3. ERS1 and STARLETTE

Due to their small size of the retroreflector arrays, there is
no significant satellite signature visible in ERS1 and STARLETTE
data; the average RMS is between 8 and 9 mm, close to the values
obtained from the calibration target.

The distribution of the data (fig. 2, upper histogram) is more
or less symmetric, with small irregularities due to lower number
of returns; the 3 mm bin width for all these histograms was
chosen in coincidence with the 20 ps resolution of the HP 5370A

counter.
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4.0 AJISAI

As a contrast to the previous satellites, AJISAI shows quite
significant signatures; these are very dependant of the return
signal strength (fig. 3).

With strong (multiphoton) return signals, AJISAI shows low RMS
(11.8 mm, upper histogram), and only slightly non-symmetric
distribution; when reducing the return signal level to mostly
single photon-electrons (by switching off the last laser
amplifier, and opening divergence; the return signal 1level is
checked in real time by watching the return signal rate and/or
the number of semi-train returns on a graphic screen), the RMS
increases to 22 mm (lower histogram), while the distribution now
follows the shape of the satellite. '

Both histograms in fig. 3 are.shown with editing criteria of
2.5 o, which is used for our routine ranging procedures; using
other o values (4 o, 3 0, 2 o), the mean value of the histogram

will move - in the worst cases - between 1 and almost 2 cCn.

5.0 LAGEOS

As expected from size and shape of LAGEOS, the satellite
signature is much less visible than with AJISAI, but is still
present (fig. 2); it is the main contribution to the increase of
the RMS, from 6 to 7 mm from the target, to 11 to 14 mm from the
satellite (again, this is valid for our single-photon detection
system, using single photon and/or multi-photon return
signals!!), with lower signal levels resulting in higher RMS.

When using different editing criteria again, the non-symmetric
distribution causes a shift of the mean value of about 1 to 2 mm,

only in extreme cases up to 4 mm.

6.0 ETALON

To complete the satellite’s list, we show also the signature

coming from ETALON ranging data, this time using a different way

2-17



of demonstrating the non-symmetric distribution. While fig. 4
shows the residuals of an ETALON-2 pass (demonstrating also the
advantage of using the semitrain!), in fig. 5 the residuals are
pPlotted after "folding", polynomial fitting and 2.50-editing. Due
to the low return signal level from these satellites (most of the
returns are single photons: We are ranging with 5 to 10 mJ
Semitrain - this is about 2 or 3 mJ for the first pulse! - and 50
cm receiver to the ETALONS, still getting return rates of up to
1000 returns per hour), we see the full satellite’s size and
shape in the data, with an RMS of 3.5 to 4 cm

7.0 Conclusion

To keep systematic errors due to the influence of the
satellite’s shape as low as possible, we
- keep calibration and satellite return signals in the same level
- use the same editing criteria (2.5 o) for calibration and for

satellite data;
- try to minimize any contributions of the system itself to non-

symmetric distributions.

As far as we Kknow, in all analyzing calculations the
satellites are treated as a "flat" reflecting surface, with a
fixed center-of-mass correction, which was determined before
launch using the detectors, techniques and accuracies available
at that time. Howev2r, with the improvements in accuracy, we can
see now the shape of the satellites in our data, which in turn
can influence the values of the center-of-mass corrections; so it
seems necessary to determine the center-of-mass correction with
respect to different receiver systems, and using different values

for the analysis.
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Figure 1: Histograms of calibration ranging to the target
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Figure 2: Histograms of ERS1 and LAGEOS returns
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Figure 3: Histograms of AJISAI returns
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THE PRECISION OF TODAY'S SATELLITE LASER RANGING SYSTEMS

P.J.Dunn and M.H.Torrence, Hughes STX Corp., Lanham,MD
V.Hussen, Bendix Field Engineering Corporation, Greenbelt,MD
M.Pearlman, Smithsonlan Astrophysical Observatory, Cambridge,Mass

Introduction

Recent improvements in the accuracy of modern SLR systems are strengthened by the new
capability of many instruments to track an increasing number of geodetic satellite targets without
significant scheduling conflict. This will allow the refinement of some geophysical parameters, such
as solid Earth tidal effects and GM, and the improved temporal resolution of others, such as Earth
orientation and station position. Better time resolution for the locations of fixed observatories will
allow us to monitor more subtle motions at the stations, and transportable systems will be able to
provide indicators of long term trends with shorter occupations. If we are to take advantage of these
improvements, care must be taken to preserve the essential accuracy of an increasing volume of
range observations at each stage of the data reduction process.

The Range Measurement

The SLR measurement is computed as one half of the product of an adopted value of the
speed of light and the observed interval between the transmit time of the pulse and the time of a
detected return. The essential simplicity of this process is tempered by the need for careful
calibration for system delay and atmospheric refraction, as well as for an accurate survey of mount
eccentricity and other important local coordinates to match the millimeter accuracy of the best
current systems. The influence of satellite signature and detector time-walk must also be considered
at this high accuracy level, and we consider here the particular need to preserve any details of these
effects which may be lost in the current normal point compression process.

Normal Point Generation

The loss of detail at each stage of the process to reduce engineering data to normal points
is illustrated in Table 1, which shows the information content of each of the parameters measured
by most instruments for a typical satellite pass or pass sequence. Information on recelve energy level
is not necessary if all time-walk characteristics of the detector system have been eliminated or
corrected before data compression. Neither will the absence of calibration details matter if the
distribution of returns is identical to that from the satellite and the same algorithm is applied to
reduce each observation. The accuracy of the satellite observations will be preserved as long as the
return distribution is normal (or Gaussian) about the mean range.

Shape Factors

Two measures of the deviation of a distribution from normal are illustrated in Figure 1. Any
skewness in the pattern of range residuals about the mean would bias normal points if we assume
that the peak of the distribution is a better measure of the range. Skewness is computed from the
third moment of the residual distribution, just as the standard deviation Is based on the second
moment: it is positive for a distribution with a tail towards long ranges, and negative (a rare
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occurrence) when the noise is short. Another shape factor can be simply obtained as a combination
of third and fourth moments: kurtosis gives an indication of flatness (low values) or peakiness (high
values). A residual histogram with low kurtosis values can be produced by using a lower value of
the sigma multiplier than three for data editing (clipping); high kurtosis values are obtained when
a larger sigma multiplier than three is employed, and the return signal appears as a spike in the
background noise,

Interpretative Aids

The utility of these shape factors can be demonstrated with examples from several different
systems. To illustrate the mechanism used to build the basic contour picture which we have adopted
for data quality assurance we refer to Figure 2, which is a three-dimensional accumulation of a
number of pass histograms for LAGEOS ranges taken at the Grasse Observatory during a three
month interval. The vertical scale shows the percentage of range measurements which lie within ten
millimeter bins distributed about the mean value. An imaginative reader will observe a progression
from a nearly symmetrical distribution in December 1990 to a significantly skewed pattern in
February 1991: the front profile on 91-02-27 demonstrates the characteristic of long noise. The
coarse grain caused by the centimeter bin width is softened in the contour of the same data which
is shown In Figure 3. The grey band of the contour scale shows a shift in the distribution in early
January 1991 and the lighter peaks also suggest a change in character at this time: the darker
contour levels emphasize the asymmetrical tail towards long ranges in January and February 1991.

Quantifying the residual behavior

Numerical descriptors for the changing residual pattern are shown in the scatter plot to the
left of the contour frame. The crosses depict a normalized skew factor which jumps from a low
(moderately skewed) to a high value at the same time that a low (flat peak) kurtosis measure returns
to a nominal level as shown by the open circles. The change in the pattern was caused by a
relaxation of the tight data editing criterion applied to the earlier observations which clipped the
distribution and muted the intrinsic asymmetry exposed with more liberal editing. The standard
deviation of the full-rate data is recorded with the normal points in the currently adopted
compression scheme, so this event would be flagged as an increase in noise level, but the skew and
kurtosis shape factors provide improved diagnostics at a relatively low computational cost.

The cause of any data asymmetry can be Isolated by inspecting the distribution of the calibration
measurements: if the asymmetry is restricted to the satellite returns, the shift in the effective range
measurement due to the editing change would amount to over a centimeter and would cause an even
larger change in the apparent height of a station position determined from these observations. On
the other hand, similar levels of asymmetry in the ground target returns would suggest a source in
the detector rather than the satellite, and if the same editing scheme was used for each data type,
there would be no bias in the satellite measurements.

Satellite and Calibration Target Data

We have considered the shape of distributions from calibration and satellite targets in an
analysis of observations from six GSFC systems collected in early 1992. Figure 4 shows a collage
of residual histogram contours from the systems tracking several different satellites: ERS-1(E),
Starlette(S). LAGEOS(L), Ajisai(A), ETALON-1(E1), and ETALON-2(E2). This broad representation
shows at a glance the higher noise level of the ETALON satellite returns, as well as the tight
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precision of data from lower-orbiting satellites like ERS-1, which amounts to about 5 millimeters
for MOBLAS-7. The same ten millimeter bin scale is used to describe the characteristics of these
instruments as for the data from Grasse in the earlier example.

The patterns for the appropriate calibration passes are given in Figure 5: they show less variation
than the satellite data, and allow us to discriminate satellite-dependent variations from detector
characteristics. None of the systems depicted here shows a systematic bias of more than a
millimeter, but subtle effects in the distribution for an individual system can be detected and
quantified by the skew and kurtosis shape factors plotted in the Figures provided for a couple of
the instruments. The satellite returns for Moblas-7 show no consistent kurtosis but a hint of the
positive skew typical of all systems’ observations of the ETALON satellites (at the bottom of the plot);
the MOBLAS-7 calibration returns are slightly clipped (low kurtosis). On the other hand, TLRS-4's
satellite returns show no significant skew, but indicate a hint of clipping; this instrument’'s
calibration data possesses the rare property of slight negative skewness.

Summary

. The effects of these idiosyncrasies in residual pattern for the GSFC systems is well below the
accuracy threshold for any currently employed application of the data, but they could be used to
characterize subtle changes in system characteristics. We have attempted to demonstrate in the
above examples the enhanced ability to monitor data quality for any SLR system with some simple
shape factors which can be computed economically in the normal point compression stage. Regular
inspection of these parameters can flag changes in data characteristics which affect range accuracy,
and also provide reassurance that our most advanced systems do indeed attain the millimeter
accuracy of which they are capable.
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N94-15560

SLR Data Screening; location of peak of data distribution
A.T. Sinclair

Royal Greenwich Observatory, Madingley Road, Cambridge CB3 0EZ, England

1. Introduction

At the 5th Laser Ranging Instrumentation Workshop held at Herstmonceux in 1984 consider-
ation was given to the formation of on-site normal points by laser stations, and an algorithm
was formulated. The algorithm included a recommendation that an iterated 3.0 x rms re-
Jection criterion should be used to screen the data, and that arithmetic means should be
formed within the normal point bins of the retained data. From 1990 September onwards
this algoritm and screening criterion have been brought into effect by various laser stations
for forming on-site normal points, and small variants of the algorithm are used by most
analysis centres for forming normal points from full-rate data, although the data screening
criterion they use ranges from about 2.5 to 3.0 x rms. At the CSTG SLR Subcommission a
working group was set up in 1991 March to review the recommended screening procedure.
The working group consists of A.T. Sinclair (chairman), G.M. Appleby, R.J. Eanes, P.J.
Dunn and T.K. Varghese. This paper has been influenced by the discussions of this working
group, although the views expressed are primarily those of this author.

The main thrust of this paper is that, particularly for single photon systems, a more im-
portant issue than data screening is the determination of the peak of a data distribution,
and hence the determination of the bias of the peak from the mean. Several methods of
determining the peak are discussed.

2. The effect of skew data

The first stage of forming normal points (described by Appleby in these proceedings) is to
fit a trend-function to the raw ranges or to their residuals from a predicted orbit so that all
signature from the orbit is removed, and then the distribution of the trend-removed data
can be examined. Some level of screening is needed in the iterative process of fitting a trend-
function, but this is not critical; 3.0 x rms or perhaps even tighter should be fine, and finally

a wider band of trend-removed data, say 5.0 x rms, should be retained for examination of the

distribution and then final screening. If these data have a symmetrical distribution about
the peak then the criterion used for final screening is not critical, and a 3.0 x rms screening
and use of the arithmetic mean should be fine. However if the data have a skew distribution
then the arithmetic mean will be biased away from the peak, and the amount of bias will
probably be dependent on the level of final screening used.

Analysis of the raw data from numerous stations shows that stations operating at a multi-
photon return level per shot tend to have a fairly symmetrical distribution of data, whereas
those operating at a single photon return level frequently show a significant skewness in the
distribution of the data, usually skewed towards long ranges. As is described in papers by
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Appleby and by Kirchner in these proceedings, some satellites (particulary Ajisai) impose
their own signature on the laser data and can cause skewness as has been detected by some
single-photon systems. However it is probable that some of the skewness is caused by the
laser systems themselves, and it is certainly not the intention to explain away features of
the system as being due the satellite. However if the skewness is due to the satellite then
a means must be found in software of handling it. If it is due to the system then one view
is that it is an engineering problem and that the hardware should be adjusted, but another
view is that hardware will never be perfectly adjusted, and that one should accept some
level of mal-adjustment and calibrate the effect out with software. Also it is possible that
some detectors such as avalanche photo-diodes have an inherent skewness which would be
very difficult to remove by adjustment of the hardware.

Systems which operate at a multi-photon return level and use pulse-level detection are in
effect using hardware to form a mean of the individual photon returns obtained each shot,
and so will see little effect from the distribution structure of the individual returns. Systems
which operate at multi-photon level and detect the first photon received will primarily see
the leading part of the distribution and will see little effect of any skew tail. Hence these
system use a hardware method to eliminate any effects of satellite signature, and must ensure
that the hardware is set up so as not to cause any biases. The objective of this paper is to
devise an equivalent software scheme for systems operating at single photon return levels.

3. Choice of reference point of data distribution

The current recommendation is that the reference point of a data distribution should be the
arithmetic mean of the data retained after a 3.0 X rms screening. This may not be ideal for
a skew distribution of data.

If a skew data distribution is entirely caused by the laser ranging system, and if the ranges
to the terrestrial calibration target have the same skew distribution as the satellite ranges.
then it probably does not matter what screening criterion is used, provided the same is
used for both calibration and satellite ranging, and it will probably be satisfactory to take
the arithmetic mean of the data, even though this does not give the peak of a skew data
distribution. However if the satellite is adding a significant contribution to the distribution,
or if for some other reason the distributions of calibration and satellite data are different,
then it is probably best that some means of processing the data should be devised such that
the peak can be located. This is because, in the complicated coiivolution of the signatures of
the system and the satellite, the range represented by the peak corresponds to the distance
travelled by a photon from the peak of the laser pulse to the peak reflection point of the
satellite (and so the centre of mass correction for the satellite should be that corresponding

to peak reflection as determined in pre-launch testing).

Note that for a satellite pass it is not the peak of the trend-removed data for the whole pass
that is required, but the peak of the distribution of the data within each normal point bin.
This is a problem as there may not be sufficient points within a bin to give a reasonable indi-
cation of the distribution. The solution we recommend is that both the peak and arithmetic
mean of the whole pass should be determined, and the difference, or bias, of the mean from
the peak should thus be determined for the whole pass. Then within each normal point bin
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Just the arithmetic mean should be determined, but it should be corrected by applying to it
the bias of the whole pass.

4. Methods of determining the peak of the data distribution

The usual method to determine the distribution of data is to plot a histogram, but this
by itself does not give a good indication of the precise location of the peak. There is some
arbitrariness introduced by the choice of bin width, and this is likely to be much coarser than
the resolution required for the peak. An improvement can be made by fitting a curve such
as a Gaussian profile to the histogram, but this total process is rather complicated, and as a
Gaussian profile is symmetrical it will to some extent be influenced by a skew data set and be
pulled away from the peak. In this paper we propose and examine three simpler techniques,
and compare their performance on a variety of passes tracked by RGO Herstmonceux.

4.1 Data smoothing

After fitting and removing of a trend function, a plot of the data against time should be just
a scatter plot about the mean, exhibiting no trend, but possibly not uniformly distributed
about the mean. In order to examine this distribution we no longer consider the data as a
time series, but just as points as lying along an z-axis, and our requirement is to plot in the
y-direction some function describing the distribution of the points. The usual procedure is to
plot a histogram, but we consider an alternative, in which each plotted residual is regarded
as the most probable location of the measurement, and so we spread (or smooth) the effect
of the residual each side of it using a Gaussian probability distribution. The result is that at
any given location on the z-axis there will be contributions from all of the residuals, which
can be summed and plotted on the y-axis. The peak of this plotted curve will give the most
probable mean value of all of the residuals. The mathematical description of the method is
very simple. Let z;, (¢ = 1,n) be the residuals of the range values from the trend function.
Then for a range of values of r at, say, 10 ps intervals, evaluate and plot the quantity ,
given by:

y=k»_ eXP[—%(f —z)?/o?)
i=]

where o is the somewhat arbitrary standard deviation of the smoothing function, although
it would be reasonable to choose a value close to the single shot precision of the system. We
regard the scale of y as arbitrary, and k is an arbitrary factor chosen to give some convenient
maximum value of y.

Figure 1 shows a series of plots of this distribution function for a pass of Ajisai for a range
of values of o, with the conventional histogram plotted also. Apart from very small values
of o the peak is well-defined, and can be determined precisely. These plots are centred on
the arithmetic mean of the distribution, so it is seen that the peak differs from the mean by
about 2 cm, showing the large effect of the skewness (which is primarily caused by Ajisai -
see paper by Appleby in this proceedings). A problem with the method is that the location
of the peak depends on ¢. As o is increased the skewness has an increasing effect on the
location of the peak, and in the plots the peak moves to the right by 2.3 mm as o varies
from 40 to 80 ps. A further problem is that for very sparse passes, possibly affected by a
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significant amount of noise, the method fails to give a single main peak, or requires a large
value of ¢ in order to do so.

4.2 Tight rejection criterion

The arithmetic mean of a set of data will be biased away from the peak due to any skewness of
the data, but the amount of bias will be reduced if a tighter rejection level is used in forming
the mean. We look at the effect of using various rejection levels, expressed as multiples
of the root mean square difference from the mean (rms). However the rms of the retained
data varies and usually gets smaller as the rejection limit is reduced, so for clarity we first
determine the mean and rms using a 3.0 x rms iterated rejection level. Then subsequent
rejection levels are expressed as multiples of this fixed rms. It also aids convergence with a
tight rejection level if the rejection level itself does not vary as the iterations proceed. The
table below gives the results of using various rejection levels on the Ajisai pass shown in
Figure 1, with the various determinations of the mean given relative to the mean obtained

using 3.0 X rms rejection.

Rej. Mean(cm) No.Pts.
3.0 X rms 0.00 1104
2.5 X rms 0.19 1081
2.0 X rms 0.58 1030
1.5 x rms 1.18 936
1.0 x rms 1.72 799
0.5 X rms 2.13 501

The peak of the distribution, as given by the smoothing method, is about 2 cm from the
initial mean, and it is seen that the successive estimates of the mean move closer to the peak
as the rejection level is reduced. For the rejection level of 0.5 x rms a large number of points
have been rejected, and also in tests on varlous passes some difficulty was experienced iu
obtaining convergence. So for subsequent tests we have adopted a level of 1.0 X rms.

Objections that are frequently raised to using a tight rejection level are that too much data
is being discarded, and that the data are being made to look better than they really are.
However what we are proposing is that this tight rejection level is used only for the purpose
of obtaining an estimate of the peak of the pass distribution, so that the bias of the peak
from the 3.0 X rms mean can be determined. The means in the normal point bins and the
value of the rms of the whole pass will be calculated from the data that remain after making

a 3.0 X rms rejection.

4.3 Pearson curves

A distribution of n points z; with mean Z is characterised to a large extent by its moments
J2, 143, 44 Where

#i = %Z(xi — )

=1
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The second moment is the square of the standard deviation. The following quantities are
also defined:

Skewness = u2/ #3 indicates deviation from symmetry, = 0 for symmetry about z

Kurtosis = p4/p32 indicates degree of peakiness, = 3 for Gaussian distribution.

These quantities are dimensionless and of restrained magnitude, and so are in some appli-
cations more convenient than the 3rd and 4th moments. This conventional definition of
skewness has the disadvantage that the sign of the 3rd moment is lost, and it is this which
describes the direction of the skewness. (It may be better to define skewness as uj3 / ug/ 2.)
In the plots in this paper we attach the sign of the 3rd moment to the skewness.

There is a method in statistics of deriving a distribution function from values of these three
moments obtained from a set of data. These are the Pearson distributions (see description by
M.G. Kendall, The Advanced Theory of Statistics, Vol 1, 1947). The distribution function
f of the quantity z is defined by a differential equation

¢ @-a)y
dr by + bz + byz?

where
a= —pu3(pq + 3[L%)/A

bo = —p2(dp2pa — 3u)/A

=
il

—pa(pa + 342)/A
by = —(2papg — 33 — 643)/A
A= 10pqpy — 1813 — 124}

and where the origin of x is now at its mean value. The peak of the distribution curve is at

r =a.

This differential equation has several forms of analytical solution depending on the values of
the moments. For values likely to be met in practice its solution is of the form
T T
=k14+—)™(1 - —)™
fe b+ D= 5
but for the precise values of the moments corresponding to a Gaussian distribution this
solution becomes singular, and it has an alternative solution which is in fact the Gaussian
distribution. So unfortunately the analytical solution is close to a singularity in the region
likely to be met in practice, and so is not a very useful way of deriving the shape of the
curve. However it is easy to solve the differential equation by numerical integration starting
from the peak, although there can be problems as the singularity on the z axis is approached
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which require a little fudging. Some solution curves are shown in Figure 2 for a range of
values of skewness and kurtosis. No attempt has been made to normalise the area under
the curves; they are all plotted with the same height at the peak. It is seen that the shapes
of the curves are close to a Gaussian curve until fairly extreme values of the parameters
are reached, eg., skewness of 0.6 or kurtosis of 2.2, and then the shapes are not particulary
typical of what is seen in some SLR data, and so it can be expected that this method will
give a good estimate of the peak for distributions close to Gaussian, but not be so useful in
more extreme cases.

This discussion of how to plot the Pearson curves is given here for completeness, but it is
not proposed that this should be a normal procedure for SLR data handling. However the
method provides a simple estimator of the location of the peak of a distribution of data.
Expressed in terms of the standard deviation o, the skewness s, and the kurtosis k, with
consideration given to the sign of the 3rd moment, the displacement of the peak from the
mean 1s

_ —s26(k + 3) x sign(us)

B 10k — 18 — 12s

5. Comparison of methods of peak determination

Figure 3 shows the results of applying these various methods of peak determination to a
number of passes tracked by RGO Herstmonceux. The passes were selected to provide a
good test of the methods, and are not necessary typical passes from the station. The figures
give the following information:

e the conventional histogram, using a bin of 40 ps (= 6 mm)

e the smoothing-method distribution function plotted as a solid curve
¢ the Pearson distribution function plotted as a dashed curve

e the 3 X rms-rejection mean shown as a solid vertical line from the top

e the 1 x rms-rejection mean shown as a dashed vertical line from the top.

The two distribution curves are plotted with slightly different peak heights for clarity, and
the peak height of the histogram is limited if necesssary to be slightly below these two curves.

The information given in the captions includes:
e Smoothing parameter o in ps (multiply by 0.15 to get mm)
e Bias(1l): difference of smoothing-method peak from 3 x rms mean
e Bias(2): difference of 1 X rms mean from 3 x rms mean

e Bias(3): difference of Pearson peak from 3 x rms mean.

Figures 3(a) and 3(b) show passes with insignificant skewness, in which all methods of
determining the peak and mean agree well.
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Figures 3(c), 3(d) and 3(e) show passes with significant skewness, in which smoothing,
Pearson and 1 x rms agree well, but are significantly different from the 3 x rms mean.

Figures 3(f) and 3(g) show passes in which smoothing and 1 xrms agree well, but the Pearson
peak stands off, and all differ from the 3 X rms mean.

Figures 3(h) and 3(i) show passes in which the Pearson peak and 1 x rms agree fairly well,
but the smoothing peak stands off.

From these and tests on numerous other passes we conclude that:

e for a single-photon station there is often a significant difference of the peak from the
3 X rms-rejection mean

e the 1 x rms-rejection mean usually agrees with one or other of the smoothing peak
and Pearson peak, and often with both.

6. Recommendations

In conclusion we recommend the following:

a) the ranges to a calibration target or the trend-removed data from a whole satellite pass
should be screened at an iterated 3 x rms level, and in the process determine rms and mean

of the retained data
b) the skewness and kurtosis of the retained data should be determined

c) using this fixed value of rms a second determination of the mean should be made using
an iterated 1 x rms rejection. This provides an estimate of peak. Then the bias of the
calibration or pass is bzas = peak — mean

d) for a calibration run, use the value of peak as the calibration value

e) for a satellite pass, form normal points from the screened data within each bin in the
usual way, but add the correction bias to the normal point.
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Figure 1. Use of the smoothing method to determine the distribution of an

Ajisai pass.
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Figure 2. A range of Pearson distribution curves.
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ABSTRACT.

A median (Ll-norm) filtering program using polynomials was
developed. This program was used in automatic recycling
data screening. Additionally a special adaptive program

to work with asymmetric distributions was developed.
Examples of adaptive median filtering of satellite laser
range observations and TV satellite time measurements are
given. The program proved out versatile and time saving

in data screening of time series measurements.

1. INTRODUCTION

The advantages of data screening of satellite laser range
measurements using median (or Ll-norm) instead of least
squares were shown earlier (Paunonen 1989). The median is
known to be insensitiveto outlying observations, which is

a useful property in preliminary data screening of any

time series measurements. Asymmetric distributions often
arise for various reasons; saturation of the laser detector
and the receiver electronics, laser prepulses etc. This
cannot be easily treated with least squares methods.

In response to multiple needs, a median program permitting
use of a higher order polynomial of up to ten was developed.
A second version used automatic recycling of the fitting loop
until a specified fit was obtained and a special program to
work with unsymmetric distributions was devised. Examples
of screening satellite laser range observations and TV
satellite time measurements are given.
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2.1 MEDIAN PROGRAM

The median program was constructed with the Fortran-
procedure published by Barrodale and Roberts (1974),
modified for polynomial use. The function to be minimized
in the overdetermined case is

M
zg'yi BT R R a2x§ el - aNx? , (1)

where yj are the observations, X; the observing times (here),
M the number of observations and N the degree of the
polynomial to be fitted to the observations, and a; (3=0...N)
the coefficients of the polynomial.

2.2 AUTOMATIC MEDIAN FILTER PROGRAM

A versatile data screening program should be able to run
automatically, without any manual interface. The median is

good basis for a filtering program, because it selects reliably
the densest part of the measurements as a reference. This means
that any erratic points, that is outliers, are of true size, and
not evened out as in the least squares method. Operation of the
sequential median filtering program is started by forming the
residuals of all the observations and calculating their average.
Observations below a certain rejection limit are selected

for the next cycle only. The problem is to find a suitable
limit which is neither too inclusive nor too exclusive. Good
operation was obtained by using the rejection level, R,

R = 3.5 * AVR , (2)

where AVR is the average of the residuals in the earlier
round. For a Gaussian-shaped distribution the width between
the zero and the point corresponding to one standard
deviation is 1.46 times the width corresponding to the
average. Thus the limit used is roughly equivalent to 2.4
times the standard deviation used in the least squares
method. The repeated rounds are limited to four, but the
final selection is generally ready after three rounds.

2.3 ADAPTIVE AUTOMATIC MEDIAN FILTER PROGRAM

In practice, the distribution of the data may be asymmetric
and may include separated peaks. In satellite laser ranging,
a distribution as shown in Fig.1l can easily arise with mode-
locked lasers. The transmitted pulse may contain a small
prepulse if selection of a single laser pulse from a train
of mode-locked 'laser pulses is incomplete. Even if the
parasitic pulse is small, it causes stops in the photon
counting mode. This poses difficulties for normal
screening methods using least squares. Use of only
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Fig. 1. An asymmetric distribution of possible range
residuals in satellite laser ranging.

a two sigma-limit (Appleby and Sinclair 1991) is possible,
but it may also fail if the contamination is severe.

The median is expected to perform better because it finds
the location of the main pulse more easily. The main part
may also show unbalanced distribution (skewness) due, for
instance, to saturation effects in the receiving
electronics.

A modified method for asymmetric distributions is proposed
as a refinement of the median filter described. Because
the median produces separate average values for positive
and negative residuals, AVR+ and AVR-, respectively, the
program is allowed to select a minimum of the absolute
values, and use it as the basis for the rejection limit

in Eq.(2),

\

AVR = Min(|AVR+]|, |AVR-|) . (3)

At least mild skewness will be corrected in this way.
If the distribution is symmetric, operation is normal.

3. TESTS OF THE ADAPTIVE MEDIAN FILTERING

The first test set was obtained from satellite laser

range observations to the distant LAGEOS- satellite

at Metsihovi, Fig. 2a. This is a mixture of good and bad
observations. The points on the shorter range side arose
from the shape of the laser pulse (Paunonen 1989).

The short 4.5 ns pulse was cut by an electro-optical

shutter from a 20 ns long ruby laser pulse. However,

the shutter operation was not perfect and sometimes some
leakage due, for instance, to changing temperature, may have
occurred. This leakage, which was less than 10 per cent, looks
like a pedestal on which a short pulse is riding.
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The energy ahead of the main pulse may stop the time interval
counter. The adaptive median filter selected 22 observations
from the 33 available ones (Fig. 2b). The initial data set is
not random, because similar results were also obtained at the
calibration line. The result is also plausible, because its
width corresponds to the laser pulse width. The earlier
method for testing one observation at a time (Paunonen 1982)
would be of little value, without knowing what to seek.

Another test set originated from recent TV satellite time
measurements (Fig. 3a). Here the second tick from the station
clock started the time interval counter and the horizontal
syncronization pulse from a satellite TV receiving system

(50 Hz rate) stopped it. The large number of badly timed
pulses propably originated from the encrypting method

the TV transmission (program RAIUNO on the EUTELSAT 1-F5
satellite) is using. This set was also cleared well with the
adaptive median filter (Fig. 3b). The r.m.s. value of the
residuals was 11 ns.

4. DISCUSSION AND CONCLUSIONS

The adaptive median filter has proved to be versatile and
to save time. It can safely remove several outliers, how-
ever large they are. This is a big advantage over the least
squares method, in which all large outliers must be removed
before any useful operations can be obtained. Polynomials
should be used with care also in median filtering.

End points in particular may behave peculiarly.

The median program sets the value of some residuals at zero
(this number is same as the degree of the polynomial),
which is artificial. The asymptotic estimation efficiency
of median is also usually worse than that of the

mean (Eadie, et.al.,1971). It seems therefore best to use
the median in the data screening phase and to use the normal
least squares method for final extraction of the results.
Use of the least squares is then well justified, because
the distribution of the screened data is nearly normal.
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New laser ranging capabilities, additional gatellites, and changing
priorities are making it more difficult to determine the most efficient
method of operations for NASA’s CDSLR Network. A software package called
SATCOP (Satellite Ranging Coordination Programs) has been developed to
ageist in mission support and planning operations. Its uses range from
planning daily station operations to conducting pre-launch satellite
visibility studies. SATCOP provides a listing and graphics output of
satellite vieibility for a given occupation site for any time period.
SATCOP may also be used to determine the optimum ranging scenario for a
station, taking into account satellite ranging priorities and station
operational requirements. Finally, SATCOP may be used to illustrate
gimultaneous satellite visibility for multiple stations.

Introduction

As the CDSLR Network grows into the 1990’s it is undergoing many
changes in both its capabilities and requirements. On the one hand great
progress has been made in terms of increasing the SLR systems’
performance. Upgrades to the onsite computer and improved laser ranging
hardware have greatly increased the number of satellite passes which can
be acquired during an operating shift by reducing the amount of time
needed for operations other than actual ranging. On the other hand, more
requirements have been placed on the systems. Many more satellites have
become available, with more scheduled for launch, thus increasing the
likelihood of simultaneocus satellite visibility. 1In addition, the
possible scenarios required for ranging these many satellites are changing
frequently, with conflicting priorities and needs.

It became apparent that some tools needed to be developed to assist
the planners in determining Network ranging priorities. Such tools have
been developed at Bendix under the direction of NASA‘s Dynamics of the
Solid Earth Project (DOSE) for both long range planning and routine
operations to maximize the amount of data collected. This paper will
review some of these tools and describe their uses.
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The SATCOP software package has several parts which are used for both
routine operations and pre-launch scheduling. The use of such software
helps determine pre-mission requirements such as ground track
determination, forecasted station performance, predictions of optimum
system locations, and predicted satellite visibility. SATCOP also
produces graphs of ground tracks of acquired passes; determines
availability of simultaneous ranging opportunities; schedules operating
hours for maximum visibility; and produces automated single station
scheduling for daily station activities.

Figure 1 is a time plot of satellite visibility for a given station.
This figure demonstrates that even with just 6 satellites considered the
opportunities for laser ranging are abundant. Such plots, and others like
it, are used for operational scheduling of station activities and for the
determination of operational requirements for future missions or
locations. Typically such a plot is done for a 7 day period, but the
number of satellites and number of days is user determined. The plot
consists of a time scale in hours GMT across the top, and a day scale down
the left. A subscale of each day is present, dividing each day into a
line for each satellite. For each satellite, a two letter satellite
identifier indicates the horizontal line across which the satellite could
be visible (refer to Figure 8 to identify the satellite associated with
each two letter identifier). Across the plot a solid line indicates when
a satellite is visible, and a total number of minutes for that day is
printed on the right. On the last day of the plot a column on the right
also indicates the total number of minutes visible during the time period
of the plot.

Figure 2 illustrates the number of possible sightings of two
satellites over a four day period at 5 locations. Such graphs are used
when extended time periods are considered, and can be used to compare
satellite visibility at several stations simultaneously. Such graphs are
useful for determining the best of several possible station locations and
the expected visibility at a given location, and can include several
satellites. Often it is alsoc desired to know the number of possible
simultaneous sightings of a satellite for several locations. Figures 3
and 4 demonstrate the tools used for determining this number. Figure 3 is
a matrix showing the number of mutual sightings possible at several
locations. The number of such sightings for a given pair of stations is
found by cross indexing between the two desired stations to find the
result within the matrix; as an example for MOBLAS 4 (7110) and MOBLAS 8
(7109) the number of such sightings is found to be 130. Figure 4 is a
listing of all possible subsets of the desired stations which can range,
along with the times of mutual availability. The user can determine the
minimum number of stations desired for simultaneous ranging, and the time
period for consideration.

The SATCOP software package has been developed to provide support for
other purposes as well. Figure 5 is a plot which shows the distribution
of acquired LAGEOS passes reported as quicklook data for the time period
May 2 to May 14, 1992. This type of plot allows the user to quickly
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determine the geographic distribution of data reported during the
indicated time period. Figure 6 is used to compare sightings for two or
more stations over a 24 hour period, and is read similarly to Figure 1.
Such a graph is convenient for quickly determining the opportunities for
coordinated activities between two or more locations with one or more
satellites.

A major use for the SATCOP package is Bingle station scheduling for
daily activities. The purpose of such scheduling is to assist the station
crew in conducting laser operations by considering as many of the
requirements and opportunities presented to the station as possible, and
then producing a schedule which is a possible ’‘optimum’ solution for the
day’s activities.

To perform such scheduling many parameters are considered. A major
requirement is to resolve ranging opportunities when two or more
satellites are visible simultaneously. SATCOP considers satellite
priority, ranging limitations such as a maximum time limit on a satellite
pass, and day or night ranging restrictions. If two satellites of the
same priority are available then the software ensures that ranging is as
evenly distributed between the two during the day as possible, based on
available minutes of data. Activities which may exclude laser activities
are taken into account, such as data preprossessing and calibration time.
If the system has the multi-satellite calibration capability then the
software determines a best sequence for calibration and ranging.

As an example a schedule generated for MOBLAS 4 at Monument Peak will
be considered, using the time period covered by Figure 1. Some of the
parameters used for generating the schedule are illustrated in Figures 7
and 8. As an aid to readability only two days will be scheduled, but
normally a regular workweek is considexed. The hours of operation were
determined previously using other methods described earlier. From this
information the schedule sent to the station is graphically shown in
Figure 9. Looking at the plot for each day there is a line corresponding
to each satellite plus an additional line showing laser .calibration,
denoted by ’'Cl’. Since this system is using the multi-satellite
calibration capability data may be acquired on several satellites between
calibrations. Also, since the overhead time has been greatly reduced by
this, and other, upgrades true interleaving of passes is possible when a
high priority short pass occurs at the same time as a low priority long
pass. The thick line represents the time that the station is actually
ranging (or calibrating), while the thin line represents the time the
satellite is actually visible (the thick line corresponding to the ranging
of a given pass is located above the thin line).

Conclusion
In the future the requirements for SLR activities will only become
greater. New satellites, new ranging scenarios, and new station abilities

will require changes to be made to the methods used to schedule
operations. Recent examples are the ETALON campaign and the multi-
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satellite upgrade.
considered.

Of course, many possible parameters have yet to be
Obviougly it is impossible to account for poor weather
conditions deterring laser activities on a given day, but plans are being
congidered to include long term weather effects as a statistical
modification of the predicted station performance. And it would be
gimilarly difficult to account for system down time due to component
failure. But the use of this package, and its continued improvement, has
allowed Bendix to more efficiently coordinate the NASA CDSLR network
activities.
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