GLONASS retroreflector array position relative to CoM

Table 1

	$\mathbf{X} \pm \Delta \mathbf{X}$	$\mathbf{Y} \pm \Delta \mathbf{Y}$	$\mathbf{Z} \pm \Delta \mathbf{Z}$
GLONASS-87, 89	$-1582,6 \pm 2$	0 ± 10	0 ± 2
GLONASS-95, -99, -102	-1901.6 ± 3	-137 ± 3	3 ± 3

SC reference frame: zero in the SC CoM, X-axis direction - opposite to direction towards the Earth center, Y-axis direction - towards the Sun.

The array position reference point is the center of the input optical aperture (prism face plane). The prism face plane is normal to the X -axis.

The range to SC CoM determined in accordance to Table 1 is to be reduced by the optical correction value δ calculated from the following expression

$$
\delta=\frac{h \cdot n}{\sqrt{1-\frac{\sin ^{2} \varepsilon}{n^{2}}}}
$$

where ε is the light incidence angle (between the beam and the perpendicular to the prism face plane), h is the prism height, and n is the prism refraction index.

At $\lambda=532 \mathrm{~nm} \mathrm{n}=1.4607 ; \mathrm{h}=19.1 \mathrm{~mm}$. Then

$$
\delta=\frac{27.899}{\sqrt{1-\frac{\sin ^{2} \varepsilon}{2.1336}}}
$$

Table 2

$\boldsymbol{\varepsilon}, \mathbf{d e g}$	$\boldsymbol{\delta}, \mathbf{m m}$	$\boldsymbol{\varepsilon}, \mathbf{d e g}$	$\boldsymbol{\delta}, \mathbf{m m}$
0	27.899	8	28.03
1	27.901	9	28.06
2	27.91	10	28.10
3	27.92	11	28.14
4	27.93	12	28.19
5	27.95	13	28.24
6	27.97	14	28.29
7	28.00	15	28.35

The range to the SC to CoM is the measured range plus total correction value $\Delta_{\mathrm{c}}=\mathrm{L}_{\text {CoM }}-\delta$, where $\mathrm{L}_{\text {CoM }}$ is the SC CoM distance from the array input plane, and δ is the optical correction value.

For example, when the SC CoM and the array aperture center are on the X -axis (see also Figure 1): $\mathrm{L}_{\mathrm{CoM}}=-\mathrm{X} \cdot \cos \varepsilon$, where X is from Table 1 , and $\Delta_{\mathrm{c}}=-\mathrm{X} \cdot \cos \varepsilon-\delta$

Figure 1. Range reduction to the SC CoM

