Topics of the F2F & Virtual, Fall 2022, ILRS ASC Meeting

□ Implementation of ITRF2020/SLRF2020 requires coordination with several additional SLRspecific models to achieve results with maximum accuracy:

□ The release and adoption of an ITRF2020-consistent IERS EOP C04 series and an update of the Bulletin A series used for our operational products:

□ IERS released such a (DRAFT) series on June 2, 2022 and we need to test it ASAP. A new format is also adopted and reference epoch has changed, from 0 hrs to 12 hrs, although it is delivered in both versions:

	•										0000041	062-now tyt								
W EAD			TATT		ER (EOR) PROD	ICT CENTER	CENTED COADTS		- INTERNAT		POTATION AN	DEEEDENCE S		CE						
# COD	(TE	DC	20 0	ON FAIDURE	DIEC consist	oct center TT	DE 2020	alod at Oh U	J - INICANAN	TONAL LANTI	KUTATION AN	D REFERENCE 3	ISTEMS SERVE	CL.						
# EUP	Lack	(S)	nict.	ion hizour	RIES CONSIST	ent with II	KF 2020 - Sun	pred at on o	ic .		-	DEO	DAAT							
# 0.6	cucc	. chi	LSC	tun. Dizout	tion Model. T	ALL 2000					C C		RIVIAI							
# Ker	eren	ce Pi	rece	SSION-NUTC	C) (12 7 2(1	AU 2000	c) (12 7) 2()		2002 0 20	12 (2) (12 7)										
# TOP	nate	4(14), TI	0.2,2(112.	6), 12.7,2(11	2.6),2(12.	6), 12.7), 2(1	12.6), 12.7,	2(112.6),2(1	12.6), 12.7)))	1004.3			1074 1076 5	N. F.	D/ 5 .			100 5
# TR	MM	UU	нн	MUD	x(~)	y(-)	UII-UIC(S)	ax(~)	ar(-)	xrt(-)	yrt(")	LOD(S)	X Er	y Er	UI1-UIC Er	dX Er	di Er	Xrt Er	yrt Er	LOD Er
1962	1	1	0	37665.00	-0.012700	0.213000	0.0326338	0.000000	0.000000	0.000000	0.000000	0.0017230	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	Z	0	37666.00	-0.015900	0.214100	0.0320547	0.000000	0.000000	0.000000	0.000000	0.0016690	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	3	0	37667.00	-0.019000	0.215200	0.0315526	0.000000	0.000000	0.000000	0.000000	0.0015820	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	4	0	37668.00	-0.021999	0.216301	0.0311435	0.000000	0.000000	0.000000	0.000000	0.0014960	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	5	0	37669.00	-0.024799	0.217301	0.0308154	0.000000	0.000000	0.000000	0.000000	0.0014160	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	6	0	37670.00	-0.027599	0.218301	0.0305353	0.000000	0.000000	0.000000.0	0.000000	0.0013820	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	7	0	37671.00	-0.030199	0.219301	0.0302682	0.000000.0	0.000000.0	0.000000.0	0.000000.0	0.0014130	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000.0	0.0014000
1962	1	8	0	37672.00	-0.032798	0.220202	0.0299280	0.000000	0.000000	0.000000	0.000000	0.0015050	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000.0	0.0014000
1962	1	9	0	37673.00	-0.035198	0.221102	0.0294869	0.000000	0.000000	0.000000	0.000000	0.0016280	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	10	0	37674.00	-0.037498	0.222002	0.0289268	0.000000.0	0.000000	0.000000	0.000000	0.0017380	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	11	0	37675.00	-0.039697	0.222803	0.0282797	0.000000	0.000000	0.000000	0.000000	0.0017940	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	12	0	37676.00	-0.041797	0.223703	0.0276136	0.000000	0.000000	0.000000	0.000000	0.0017740	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	13	0	37677.00	-0.043797	0.224503	0.0270075	0.000000	0.000000	0.000000	0.000000	0.0016670	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	14	0	37678.00	-0.045697	0.225203	0.0265403	0.000000.0	0.000000	0.000000	0.000000	0.0015100	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	15	0	37679.00	-0.047496	0.226004	0.0262572	0.000000	0.000000	0.000000	0.000000	0.0013120	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000.0	0.000000	0.0014000
1962	1	16	0	37680.00	-0.049196	0.226704	0.0261751	0.000000	0.000000	0.000000	0.000000	0.0011120	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	17	0	37681.00	-0.050796	0.227404	0.0262740	0.000000	0.000000	0.000000	0.000000	0.0009360	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	18	0	37682.00	-0.052295	0.228005	0.0265299	0.000000	0.000000	0.000000	0.000000	0.0008110	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	19	0	37683.00	-0.053595	0.228705	0.0268868	0.000000	0.000000	0.000000	0.000000	0.0007330	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
1962	1	20	õ	37684 00	-0.054895	0.229305	0.0273077	0.000000	0.000000	0.000000	0.000000	0.0006810	0.030000	0.030000	0.0020000	0.004774	0.002000	0.000000	0.000000	0.0014000
# EAR	TH OF	RIEN	TATI	ON PARAMET	ER (EOP) PROD	UCT CENTER	CENTER (PARIS	OBSERVATORY) - INTERNAT	IONAL EARTH	ROTATION AN	D REFERENCE S	YSTEMS SERVI	CE To	the memory	at these area	available f			
# EOP	CIE	RS)	20 0	04 TIME SE	RIES consiste	nt with ITR	F 2020 - same	led at 12h U	тс					FO	r the mome	nt they are	available il	om.		
# Con	tact	: ch	rist	ian.bizoud	rd@obspm.fr		_	ditto -			NICIAL D	ODMAN		htt	os://hpiers.c	obspm.fr/iei	rs/eop/eopo	:04_20/		
# Ref	eren	re P	rece	ssion-Nuto	tion Model . T	ALL 2000			_		NEWF	ORIVIA		Sh	ort descripti	ion:				
# for	nat(4	4(14).f1	0.2.2(f12.	6).f12.7.2(f1	2.6).2(f12.)	6).f12.7).2(f	12.6).f12.7.	2(f12.6).2(f	12.6).f12.7)))			htt	os://hpiers.c	obspm.fr/iei	rs/eop/eopo	:04 20/eor	c04.txt	
# YR	MM	DD	HH	MID	x(")	v(")	UT1-UTC(s)	dX(")	dY(")	xrt(")	vrt(")	LOD(s)	x Er	v Er	UT1-UTC Er	dX Er	dY Er	xrt Er	vrt Er	LOD Er
1984	1	1	12	45700 50	-0 134064	0 093057	0 3968898	0 002255	-0 002791	0 034912	-0 041530	0 0014139	0 001250	0 000992	0 0002417	0 000349	0 000351	0 001226	0 000991	0 0000730
1984	1	2	12	45701 50	-0.136239	0.096494	0.3955314	0 001470	-0.001946	0 034788	-0.041499	0.0013168	0.001201	0.000990	0.0002417	0.000349	0.000351	0.001203	0.000990	0.0000730
1984	1	3	12	45702 50	-0 139537	0 099740	0 3942317	0 000860	-0 001281	0 034035	-0 041884	0 0012952	0 001156	0 000987	0 0002417	0 000349	0 000351	0 001165	0 000988	0 0000730
1984	1	4	12	45703 50	-0 143743	0 101176	0 3020177	0.000000	-0 000780	0.037852	-0 042007	0 0013437	0.001120	0.000986	0.0002417	0.000349	0.000351	0.001110	0.0000003	0.0000730
1094	1	5	12	45704 50	-0.149500	0.101264	0.3325177	0.000002	-0.000/00	0.032332	-0.042952	0.0013457	0.001063	0.000000	0.0002417	0.000345	0.000351	0.001110	0.000333	0.0000730
1084	1	6	12	45705 50	-0.140390	0.101204	0.3913231	-0.000093	-0.000427	0.032322	-0.042631	0.0014302	0.001003	0.000338	0.0002417	0.000351	0.000332	0.001130	0.000979	0.0000725
1904	-	-	12	45705.50	-0.151594	0.104927	0.3900043	-0.000097	-0.000203	0.032020	-0.042042	0.0013903	0.001144	0.000975	0.0002417	0.000308	0.000339	0.001148	0.000972	0.0000720
1984	1	-	12	45700.50	-0.155162	0.109486	0.3883270	-0.000179	-0.000093	0.031313	-0.042989	0.0017591	0.001233	0.000945	0.0002417	0.000395	0.000370	0.001148	0.000931	0.0000721
1984	1	8	12	45/07.50	-0.155200	0.112946	0.3864894	-0.000173	-0.000079	0.030267	-0.043401	0.0019132	0.001152	0.000889	0.0002417	0.000425	0.000382	0.001139	0.000880	0.0000/16
1984	1	9	12	45/08.50	-0.157800	0.115832	0.3845110	-0.000093	-0.000145	0.029176	-0.043217	0.0020371	0.001045	0.000816	0.0002417	0.000445	0.000391	0.001066	0.000829	0.0000/12
1984	1	10	12	45709.50	-0.160851	0.118432	0.3824310	0.000043	-0.000273	0.028188	-0.042946	0.0021143	0.000980	0.000770	0.0002417	0.000457	0.000398	0.001054	0.000825	0.0000712
1984	1	11	12	45710.50	-0.163814	0.121037	0.3803018	0.000217	-0.000447	0.027569	-0.043207	0.0021339	0.001063	0.000835	0.0002417	0.000481	0.000421	0.001068	0.000839	0.0000717
1984	1	12	12	45711.50	-0.165961	0.123889	0.3781855	0.000414	-0.000649	0.027545	-0.044075	0.0020873	0.001156	0.000909	0.0002417	0.000522	0.000462	0.001143	0.000899	0.0000726
1984	1	13	12	45712.50	-0.166976	0.127234	0.3761501	0.000617	-0.000863	0.028175	-0.044826	0.0019723	0.001223	0.000963	0.0002417	0.000570	0.000508	0.001195	0.000970	0.0000736
1984	1	14	12	45713.50	-0.166969	0.131435	0.3742599	0.000807	-0.001071	0.028363	-0.045465	0.0018003	0.001234	0.001031	0.0002417	0.000605	0.000543	0.001235	0.001020	0.0000744

- □ Up-to-date station eccentricity file (continuously updated from local surveys, etc.), latest release is slrecc.220429.ILRS.{xyz/une}.snx, *some errors in prior years corrected*;
- □ José released a **revised target signature model** based on the one adopted during ITRF2020 development, with new stations added-in as needed, and changes due to station equipment or procedure revision applied:

Latest release on or about October 12: com6.220915

□ The new model should be adopted by all ACs ASAP

□ José needs to look into recent findings/corrections of old station logs as they become available and incorporate the corrections in future releases!

- □ The application of the **SSEM bias model** used in ITRF2020 development is required for the period 1993.0 2021.0
- The model must be extended up to present and maintained continuously as stated and agreed during our June 30 (virtual) meeting, in order to accommodate changes in the adopted values/procedures, as well as the inclusion of future stations;
- We agreed on a new WEEKLY product using the analysis style adopted for the v230 series used to generate the SSEM model extension, running with 10 days latency, delivering each Wednesday a v230-type SINEX (version v280), to be combined with the current model, extending the validity into the future. To this date almost no AC has maintained their v230 series current:

version	ASI	BKG	DGFI	ESA	GFZ	JCET	NSGF	ILRSA	ILRSB
v230	18-07-2022 (106 files)	22-07-08 (103 files)	27-07-12 (105 files)	27-07-2022 (106 files)	28-07-2022 (105 files)	06-09-2022 (125 files)	25-07-2022 (111 files)		
First week	200620	200606	200711	200718	200523	200620	200627		
Last week	220625	220528	220709	220723	220611	221029	220806		

- □ The new model will be called *SSEM-X* and it will either extend the currently adopted mean long-term biases at each site or, when a significant and persistent change is detected, it will introduce a brake and start a new entry for the site where the change is observed;
- The Data Handling File (DHF) used in developing ITRF2020 is under revision to include events between 2021.0 and present, and to adjust any biases for which an engineering fix was determined recently. This DHF will be adopted for use with the SLRF2020 upon its adoption and implementation.

□ Once the ILRS ASC AC/CCs implement ITRF2020/SLRF2020 and the associated models (PSD, EOP, etc.), we will proceed with:

- A complete reanalysis of the 1993-present LAGEOS and Etalon data in WEEKLY arcs, to be performed by all 7 ACs;
- □ The two CCs will generate the combined products as it is usually done for the operational series;
- □ The new series of SINEXs (**v80**) will become the standard available product and it will be archived at the DCs with a landing page and an associated DOI for reference.
 - the IERS Rapid Service/Prediction Center has not released yet the new version of the Bulletin A that is compatible with ITRF2020, we need to provide them with our preliminary EOP from the test runs using SLRF2020. All AC s should deliver all of the WEEKLY SINEXs for 2021 & 2022 ASAP based on the REPRO models and SLRF2020. These can be combined quickly and the EOP SINEXs sent to IERS RS/PC at USNO so that they can gather the bias they need to apply to the new SLR EOP in generating the new Bulletin A.

A new series of analysis products will be initiated:

➡ With ITRF2020/SLRF2020 adopted, the 7 ACs will work to establish a new operational DAILY series (v180) and WEEKLY series (v80) with 10 days latency, as the SSEM v280, using the ITRF2020/SLRF2020 model, in all of ILRS' official products (POS+EOP, Orbits, Daily QC Reports and Weekly series);

sunday 1		sat 7	sun 8	 sat 14	sun 15	mon 16	tue 17	wed 18	
Data arc from 1 to 7						AC	CC		
							V80 V280	V80 V280	
							arc 1-7	arc 1-7	

A concise "manual" for SLR data analysis using the new ITRF2020/SLRF2020 model, the associated DHF and ancillary models e.g., the target signature model, TGV, etc., will be compiled and distributed to the SLR data user community.

PROPOSED TIMELINE:

- □ The DHF used for ITRF2020 development will be **updated** to include elements covering the period 2021 to present and it will become public since it is an integral part of the ITRF2020 implementation;-- **Expected Release:** December 2022(???)
- □ The operational extension of the "SSEM" model, SSEM-X; -- Ongoing
- □ ASC monitoring of SLR network h/w changes to update the "target signature correction" model, primarily for the geodetic spheres; -- Ongoing
- **G** Full implementation of ITRF2020 in operational series (v80, v180, v280) by January 2023
- A complete reanalysis of the 1993-present LAGEOS and Etalon data in WEEKLY arcs by **February** 2023? The reanalysis after ITRF2014 was v75, this reanalysis version could be v85.

v70 and v170 Operational products

ILRS-ASC product	Series Designator (as of March 2020)	TRF (SLRF2014 release)	Target Signature Model (CoM corrections)	ILRS Data Handling file release date	A priori EOP Series	Secular pole model	HF-EOP
Official Products							
Daily POS+EOP	v170	2018-05-04 (loosely constrained)	2019-12-17	<mark>04/27/20</mark> (9/25/2019)	IERS Bulletin A (estimated)	"ILRS"-IERS mean pole	conventional (IERS Conventions 2010)
Weekly POS+EOP	v70	2018-05-04 (loosely constrained)	2019-12-17	<mark>04/27/20</mark> (9/25/2019)	IERS Bulletin A (estimated)	"ILRS"-IERS mean pole	conventional (IERS Conventions 2010)
Weekly Orbits	v70	2018-05-04 (release, fixed to a priori)	2019-12-17	04/27/20 (9/25/2019)	IERS Bulletin A (EOP fixed to a priori)	"ILRS"-IERS mean pole	conventional (IERS Conventions 2010)

ILRS-ASC product	Series Designator (as of March 2020)	Gravitational corrections ATM. & OCN. (AOD)	Static Gravity model	Time Varying Gravity model (TVG)	Earth & Ocean Tide models	Ocean Loading model
Official Products						
Daily POS+EOP	v170	None	GGM05C	JCET2018	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.7
Weekly POS+EOP	v70	None	GGM05C	JCET2018	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.7
Weekly Orbits	v70	None	GGM05C	JCET2018	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.7

Pilot Project products

Geometry

ILRS-ASC product	Series Designator (January 2023)	TRF (SLRF2020 release)	Target Signature Model (CoG corrections)	ILRS Data Handling file release date	A priori EOP Series	Secular pole model	HF-EOP
Official Products							
Daily POS+EOP	v180	2022 (loosely constrained)	2022-09-15	2022	IERS Bulletin A (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
Weekly POS+EOP	v80	2022 (loosely constrained)	2022-09-15	2022	IERS Bulletin A (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
Weekly Orbits	v80	2022 (release, fixed to a priori)	2022-09-15	2022	IERS Bulletin A (EOP fixed to a priori)	secular pole (UAW2017)	Desai and Sibois (2019)
Pilot Project Products							
SSEM PP POS+EOP*	v230	2020-04-28 (orientation loosely constrained)	2020-06-08	2019-07-31 (via email)	IERS 14 C04 (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
SSEM-X POS+EOP	v280	2022 (loosely constrained)	2022-09-15	2022	IERS 20 C04 (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
LARES & Gravity PP	v300	2022 (orientation loosely constrained)	2022-09-15	2022	IERS 20 C04 (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
LARES & Gravity PP with NT Loading Corrections	v310	2022 (orientation loosely constrained)	2022-09-15	2022	IERS 20 C04 (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
Discontinued Products							
REPRO 2020	v400/v401/	2020-04-28 (orientation loosely constrained)	2020-06-08	2021-01-27 (via email)	IERS 14 C04 (estimated)	secular pole (UAW2017)	Desai and Sibois (2019)
NOTE: To be discontinued once v280 becomes operational							

Release: 2022.11.04

Pilot Project products

ILRS-ASC product	Series Designator (January 2023)	Gravitational corrections ATM. & OCN. (AOD)	Static Gravity model	Time Varying Gravity model (TVG)	Earth & Ocean Tide models	Ocean Loading model		
Official Products								
Daily POS+EOP	v180	None	GGM05C	JCET2022	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
Weekly POS+EOP	v80	None	GGM05C	JCET2022	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
Weekly Orbits	v80	None	GGM05C	JCET2022	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
Pilot Project Products								
SSEM PP POS+EOP*	v230	None	GGM05C	JCET2018	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.7		
SSEM-X POS+EOP	v280	None	GGM05C	JCET2022	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
LARES & Gravity PP	v300	ON ORBIT ONLY: GGFC ERA5 & TUGO-m or AOD1B- RL06, etc.	GGM05C	JCET2022	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
LARES & Gravity PP with NT Loading Corrections	v310	GGFC ERA5 & TUGO-m or AOD1B-RL06, etc.	GGM05C / EIGEN- GRGS.RL04.MD*	JCET2022	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
Discontinued Products								
REPRO 2020	v400	ON ORBIT ONLY: GGFC ERA5 & TUGO-m or AOD1B- RL06, etc.	GGM05C / EIGEN- GRGS.RL04.MD*	JCET2021	IERS Conventions 2010 & GOT4.10c/FES2014/etc.	GOT4.10c / FES2014c		
* NOTE: To be discontinued once v280	NOTE: To be discontinued once v280 becomes operational							
Release: 2022.11.04	*Provided you use the NEW IERS (2018) « linear mean pole convention » version of the model !!!							

*We may switch to GOT5 and a comparable FES model when avaiable

Gravity

Lares PP Status (v300)

Solution submitted to EDC (Year: 2017):

FirstLast- ASI: 52 Weekly Sinexasi.pos+eop.170107.v300.snxasi.pos+eop.171230.v300.snx- DGFI: 53 Weekly Sinex (with cn/sn estimations)dgfi.pos+eop.161231.v300.snxdgfi.pos+eop.171230.v300.snx

- Estimation of Coefficients

ASIAC&CC report

e-GEOS S.p.A., CGS - Matera

G. Bianco Agenzia Spaziale Italiana, CGS - Matera

ILRS ASC Guadalajara Meeting, 06/11/2022

Activities since last ASC meeting

- ACs performance check
 - Data submissions
 - 3D wrms of the residuals w.r.t. SLRF (daily and weekly)
 - Scale
 - Geocenter motion
 - LOD
 - Orbits: RMS of residuals w.r.t. combination
 - ILRS ACs orbit agreement
- Activities to control systematic error, its modelling for the SLR contribution to ITRF2020, future perspectives.

Solution submissions

Daily (v170) ACs time series 2021/11/03 – 2022/11/03

Solution submissions

Weekly (v70) ACs time series 2021/11/03 – 2022/11/03

Stations coordinates from daily solutions

3D wrms of the residual w.r.t. SLRF2014 CORE SITES

Scale from weekly solutions

(Weekly Data) Parameters w.r.t. ITRF

Geocenter motion from daily solutions

LOD from daily solutions

(Daily Data, day = 6) EOP w.r.t. USNO

EOP from daily solutions

LAGEOS1 orbits – RMS of residuals w.r.t. combination

LAGEOS2 orbits – RMS of residuals w.r.t. combination

ETALON1 orbits – RMS of residuals w.r.t. combination

ETALON2 orbits – RMS of residuals w.r.t. combination

ILRS ACs orbit agreement

Satellite	Radial [mm]	Cross-track [mm]	Along-track [mm]
LAGEOS1	5.82	28.2	28,19
LAGEOS2	6.5	27.6	32.81
ETALON1	40.1	139.6	141.67
ETALON2	36.64	147.5	138.55

Mean RMS over the period 2021/11/03-2022/11/03

Systematic Errors in SLR Data Modeled in ITRF2020

Slides from the presentation at Unified Analysis Workshop (UAW), Thessaloniki 21-23 October 2022

Station Systematic Error Modeling (SSEM) in ITRF2020

- In 2015 ILRS launched a multi-year effort to address and resolve the SLR scale issue: Station Systematic Error Modeling Pilot Project (SSEM PP) to estimate RBIAS simultaneously with the station positions
- Analysis since **01/1993**.
 - Weekly estimation of coordinates, EOP and range biases RB
 - Time frame for the Pilot Project: 1993 2020 for ITRF2020 and currently extended to 06/2022
 - Data: LAGEOS , LAGEOS 2, ETALON1-2
 - Time series with separate range biases for LAGEOS, combined for ETALON
 - Update of the Data Handling file with a set of mean range biases obtained from the combined time series

Reanalysis since 1993 (both ACs and CCs) in weekly arcs adopting the new data handling file and production of SINEX files submitted to IERS for ITRF.

Reanalysis 1983-1992 (both ACs and CCs) and production of SINEX files submitted to IERS

- 15-day estimation of coordinates, EOP and range biases RB
- Data: LAGEOS

Range bias estimation in the SSEM Pilot Project

Changes in stations systematic behaviour were identified in the combined series and in consultation with available station logs. Estimates were used as *a priori* in the reanalysis for ITRF2020.

http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/

The Data Handling file

+MODEL/RANGE_BIAS *List of mandatory systematic errors to be applied on observations

+SOLUTION/DATA_HANDLING

* list of data to be deleted

* list of mandatory arc dependent biases to be estimated

* meteo correction

+MODEL/TIME_BIAS

* Time Biases including the

* T2L2 Tb and Tb-rate DATA RECORDS

* which are significant for LARES and higher orbits (range equivalent >10 mm)

and

** SECTION WITH OPTIONAL CORRECTIONS COMMENTED with "*"

Impact on the scale

Scales with respect to ITRF2020

- Orange: all VLBI Sessions
- Red: Selected VLBI Sessions
- Light blue: all SLR time series
- Dark blue: Selected SLR time series

Scale offset between SLR & VLBI is 0.15 ppb (1 mm at the equator)

Ref: Altamimi et al, 2022

Operational Data Handling file

- Extension of the SSEM to mid-2022
- Weekly production of SSEM-like SINEXs file to routinely extend the RB time series
- Periodic update of the DH file

DH file for ITRF2020

Extended DH file to June 2022

Old_reco	rds.snx — Edited		• • •	· · · · · · · · · · · · · · · · · · ·	New_records.snx	
608: 1890 51 501 A 12:001:00000 21:001:00000 R	12.9	1.1	1890 51 501 A	12:001:00000 22:149:00000 1	R 14.0	1.0 🗹
609: 1893 51 501 A 05:212:00000 21:001:00000 R	-33.4	1.6	1893 51 501 A	05:212:00000 22:177:00000 I	R -33.2	1.4
613: 7090 51 501 A 14:208:00000 21:001:00000 R	2.3	0.2	7090 51 501 A	14:208:00000 22:177:00000 1	R 2.4	0.2
621: 7110 51 501 A 96:287:00000 21:001:00000 R	-5.2	0.2	7110 51 501 A	96:287:00000 22:177:00000 1	R -5.3	0.2
624: 7119 51 501 A 15:067:00000 21:001:00000 R	9.4	0.4	7119 51 501 A	15:067:00000 22:177:00000 1	R 9.8	0.4
634: 7237 51 501 A 12:120:00000 21:001:00000 R	4.4	0.4	7237 51 501 A	12:120:00000 22:177:00000	R 5.4	0.4
643: 7501 51 501 A 19:048:00000 21:001:00000 R	13.6	1.4	7501 51 501 A	19:048:00000 22:142:00000 1	R 10.9	1.1 🗸
647: 7810 51 501 B 16:080:00000 21:001:00000 R	6.7	0.3	7810 51 501 B	16:080:00000 22:051:00000 1	R 7.0	0.3
651: 7825 51 501 A 04:214:00000 21:001:00000 R	1.0	0.2	7825 51 501 A	04:214:00000 22:177:00000 1	R 0.8	0.2
659: 7839 51 501 A 03:285:00000 21:001:00000 R	3.8	0.1	7839 51 501 A	03:285:00000 22:177:00000	R 3.9	0.1
662: 7840 51 501 A 07:035:00000 21:001:00000 R	-2.4	0.2	7840 51 501 A	07:035:00000 22:177:00000 I	R -2.2	0.1
663: 7841 51 501 A 04:053:00000 21:001:00000 R	1.9	0.3	7841 51 501 A	04:053:00000 22:177:00000 I	R 2.2	0.3
668: 7845 51 501 A 15:004:00000 21:001:00000 R	-6.0	0.4	7845 51 501 A	15:004:00000 22:177:00000 I	R -3.3	0.4 💛
681: 1890 52 501 A 12:001:00000 21:001:00000 R	13.3	1.3	1890 52 501 A	12:001:00000 22:149:00000 1	R 14.0	1.1
682: 1893 52 501 A 05:212:00000 21:001:00000 R	-32.7	1.6	1893 52 501 A	05:212:00000 22:177:00000 I	R -32.4	1.5
686: 7090 52 501 A 14:208:00000 21:001:00000 R	2.5	0.2	7090 52 501 A	14:208:00000 22:177:00000 1	R 2.7	0.2
694: 7110 52 501 A 96:287:00000 21:001:00000 R	-4.8	0.2	7110 52 501 A	96:287:00000 22:177:00000 1	R -4.9	0.2
697: 7119 52 501 A 15:067:00000 21:001:00000 R	10.3	0.5	7119 52 501 A	15:067:00000 22:177:00000 1	R 10.9	0.4
707: 7237 52 501 A 12:120:00000 21:001:00000 R	5.6	0.5	7237 52 501 A	12:120:00000 22:177:00000 1	R 6.5	0.4
716: 7501 52 501 A 19:048:00000 21:001:00000 R	13.4	1.4	7501 52 501 A	19:048:00000 22:142:00000 1	R 10.9	1.1 🗸
720: 7810 52 501 B 16:080:00000 21:001:00000 R	8.1	0.3	7810 52 501 B	16:080:00000 22:051:00000 1	R 8.2	0.3
724: 7825 52 501 A 04:214:00000 21:001:00000 R	1.7	0.2	7825 52 501 A	04:214:00000 22:177:00000 1	R 1.4	0.2
732: 7839 52 501 A 03:285:00000 21:001:00000 R	4.6	0.2	7839 52 501 A	03:285:00000 22:177:00000 1	R 4.7	0.1
735: 7840 52 501 A 07:035:00000 21:001:00000 R	-0.8	0.2	7840 52 501 A	07:035:00000 22:177:00000 I	R -0.7	0.1
736: 7841 52 501 A 04:053:00000 21:001:00000 R	3.0	0.3	7841 52 501 A	04:053:00000 22:177:00000 I	R 3.3	0.3
741: 7845 52 501 A 15:004:00000 21:001:00000 R	-3.8	0.4	7845 52 501 A	15:004:00000 22:177:00000 1	R -2.1	0.3

Extended RB time series for Grasse

Date of discontinuity to be checked with the station

RB impact on the Grasse coordinates

Same discontinuity found in the RB time series

Latest Updated Target Signature Corrections

• Reevaluation of the operating practices of stations and computation of station and satellite specific (time-dependent) target signature corrections.

CoM Correction:

- J. Rodriguez Model at 11/05/2021
- Updates with minor changes

A Global SLR-only Reference Frame

Historical Series

Matera (7941): Trended

Historical Series

Matera (7941): DeTrended

	WRMS	
Nord	3,17 mm	WR Ect
East	2,38 mm	ESU
Up	5,64 mm	

WRMS of residuals of globk Estimates w.r.t. ITRF2020

Ref. Frame Estimates

Blue: Globk Estimate Red: ITRF2020

Sigma Up to:

10 mm/yr

Thank you

Updates to the centre of mass corrections in preparation for ITRF2020 products

José Rodríguez IGN-Yebes ASC Nov 06, 2022

Unión Europea Fondo Europeo de Desarrollo Regional "Una manera de hacer Europa"

Where are we

- For the final run of the PP on systematic errors, and the first batch of REPRO2020 solutions (1993–2020), the CoM version adopted was v200608
- For the ITRF2020 reanalysis, the ASC was asked to deliver solutions for the 1983–1993 period, valuable for the computation of the different global TRF solutions (IGN, DGFI, JPL)
- Given the inferior quality of the observations, and the sparse information available, a coarse approach was followed to provide the corrections for several missing pre-ILRS stations \rightarrow v210511 adopted for the reanalysis
- The ILRS ASC will soon transition to ITRF2020 standards for their daily and weekly products
- Recent station updates and missing stations motivate the last update of the corrections

Updates

- Christian Schwatke's automatic service emails me every time there is a site log change, with all the details
- If changes do not impact the CoM computation, they are ignored
- Otherwise I archive them for future inspection
- 17 stations were in the list for examination in this update:

1824, 7080, 7105, 7110, 7124, 7249, 7396, 7701 (new), 7816 (new),

7821, 7824, 7825, 7838, 7839, 7841, 7941, 8834

• Only the changes in 10 stations required a recomputation:

7110, 7124, 7249, 7396, 7701 (new), 7821, 7824, 7838, 7941, 8834

Updates

- Some stations were contacted for clarifications
 - Replies from 1824 GLSL, 7249 BEIL, 7821 SHA2, 8834 WTZL
 - No reply yet from 7396 JFNL (minor issue)
- The changes detailed in the site logs were very minor, e.g. slight changes in laser pulse widths or detector jitter
- I fixed some minor inconsistencies in my logs, discovered while checking the new changes
- I updated the NP database to estimate return rates for the latest system configurations
- The results are not very exciting...which means that minor changes don't derail the model

7110 and 7105 Etalon CoMs

- This is a time series of 7110 (MOBLAS-4) and 7105 (MOBLAS-7) Etalon CoM corrections. The system configuration changes are annotated inside the boxes. Based on the 7110 MCP-PMT change there was a 20 mm drop in the MOBLAS-4 CoM correction on 19-August-2001
- 7110 and 7105 currently have the same system configuration, but the CoM corrections are quite different
- Did the 20 mm drop in the 7110 Etalon CoM impact the estimated range bias?
- If the CoM correction is in error by 'z', it will induce an apparent range bias = 'z'. For example, if the CoM is too small by 1 mm, it will induce an apparent -1 mm range bias.

Van Husson. CoM and SSEM Range Bias Analysis. QCB presentation

- Confirmed anomaly in the modelling chain:
 - Single variable that defines the discriminator threshold in multi-photon stations
- This is not computed automatically, but adjusted manually according to the best agreement with the NP RMS
- Set to 1, 2, or 3 photoelectrons. Probably there is no 1:1 equivalent to a tunable accesible by stations (they set voltages)
- Big impact for large targets \rightarrow Etalon, Ajisai
- Reason for odd value compared to rest of MOBLAS unclear, it seems clear now that it should be the same

LAGEOS-1 (old/new values)		E	FALON	1-1 ((old/
7110 15 08 1983 31 03 1986	com 243.6	7	110 3	31 03	3 1986
7110 31 03 1986 19 08 2001	com 245.6	7	110 1	L9 08	3 2001
7110 19 08 2001 01 01 2050	com 244.6	7	110 3	31 03	3 1986
7110 15 08 1983 31 03 1986	com 244.7	— 7	110 1	L9 08	3 2001
7110 31 03 1986 19 08 2001	com 245.8				
	00m 245 7	S	FARLE	TTE	(old/
/110 19 08 2001 01 01 2050	245.7	7	110 1	L5 08	3 1983
		7	110 3	31 03	3 1986
LAGEOS-2 (old/new values)		7	110 1	L9 08	3 2001
7110 31 03 1986 19 08 2001	com 245.4	7	110 1	L5 08	3 1983
7110 19 08 2001 01 01 2050	com 243.9	7	110 3	31 03	3 1986
7110 31 03 1986 19 08 2001	com 245.3		110 1	L9 08	3 2001
7110 19 08 2001 01 01 2050	com 245.2				
		A	JISAI	[(o]	Ld/new
LARES (old/new values)		7	110 1	L5 O8	3 1983
7110 19 08 2001 01 01 2050	com 130.0	7	110 3	31 03	3 1986
	com 130 1	7	110 1	L9 08	3 2001
/110 17 00 2001 01 01 2030	130.1	7	110 1	L5 08	3 1983
		7	110 3	31 03	3 1986
		7	110 1	10 05	3 2001

7110	31	03	1986	19	08	2001	com	583.0
7110	19	08	2001	01	01	2050	com	563.8
7110	31	03	1986	19	08	2001	com	583.3
7110	19	08	2001	01	01	2050	com	583.4

STAR	ETT	FE ((old/r	new	values)			
7110	15	08	1983	31	03	1986	com	75.5
7110	31	03	1986	19	08	2001	com	76.1
7110	19	08	2001	01	01	2050	com	75.6
7110	15	08	1983	31	03	1986	com	75.8
7110	31	03	1986	19	08	2001	com	76.1
7110	19	08	2001	01	01	2050	com	76.2

alues)

7110	15	08	1983	31	03	1986	com	981.1
7110	31	03	1986	19	08	2001	com	994.5
7110	19	08	2001	01	01	2050	com	983.1
7110	15	08	1983	31	03	1986	com	992.9
7110	31	03	1986	19	08	2001	com	995.0
7110	19	68	2001	01	01	2050	com	996 9

LAGEOS-:	1 (0	old/ne	ew v	/alu	ues)			
7110 15	08	1983	31	03	1986	com	243.6	
7110 31	03	1986	19	08	2001	com	245.6	
7110 19	08	2001	01	01	2050	com	244.6	
7110 15	08	1983	31	03	1986	com	244.7	
7110 31	03	1986	19	08	2001	com	245.8	
7110 19	08	2001	01	01	2050	com	245.7	
LAGEOS-2	2 (0	old/ne	ew v	/alu	ues)			
LAGEOS- 7110 31	2 (a 03	old/ne 1986	ew \ 19	/alu 08	ues) 2001	COM	245.4	
LAGEOS-: 7110 31 7110 19	2(0 03 08	old/ne 1986 2001	ew \ 19 01	/alu 08 01	ues) 2001 2050	COM COM	245.4 243.9	
LAGEOS-2 7110 31 7110 19 7110 31	2 (0 03 08 03	old/ne 1986 2001 1986	ew 19 01 19	/alu 08 01 08	ues) 2001 2050 2001	com com	245.4 243.9 245.3	
LAGEOS-2 7110 31 7110 19 7110 31 7110 19	2 (0 03 08 03 08	old/ne 1986 2001 1986 2001	ew 19 01 19 19	/alu 08 01 08 01	2001 2050 2001 2001 2050	com com com	245.4 243.9 245.3 245.2	

LARES	(old/	/new	values)
-------	-------	------	---------

7110	19	08	2001	01	01	2050	com	130.0	
7110	19	08	2001	01	01	2050	com	130.1	

ETALON-1	l (old/r	new val	ues)		
7110 31	03 1986	5 19 08	2001	com	583.0
7110 19	08 2002	L 01 01	2050	com	563.8
7110 31	03 1986	5 19 08	2001	com	583.3
7110 19	08 2002	L 01 01	2050	com	583.4

STARLETTE (old/new values) 7110 15 08 1983 31 03 1986 com 75.5 7110 31 03 1986 19 08 2001 com 76.1 7110 19 08 2001 01 01 2050 com 75.8 7110 31 03 1986 19 08 2001 com 75.8 7110 31 03 1986 19 08 2001 com 76.1 7110 15 08 1983 31 03 1986 com 75.8 7110 31 03 1986 19 08 2001 com 76.1 7110 19 08 2001 01 01 2050 com 76.2

AJISAI (old/new values)

7110	15	08	1983	31	03	1986	com	981.1
7110	31	03	1986	19	08	2001	com	994.5
7110	19	08	2001	01	01	2050	com	983.1
7110	15	08	1983	31	03	1986	com	992.9
7110	31	03	1986	19	08	2001	com	995.0
		00	1,00	- /			••••	,,,,,,

- Double win:
 - Corrected Etalon 20 mm error (and Ajisai 14 mm)
 - Found out reason for the strange value \rightarrow other instances lurking in the data?

The rest: boring

- Very small differences (mostly sub-mm), as expected from the modest system changes
- Exception for LAGEOS:
 - 7821 SHAO2 tweaked leading edge filter in 2021
 - ~3.4 mm difference in both LAGEOS and LAGEOS-2
 - Probably too early to tell if correct

- The adoption of this latest udpate should be quite painless
- Models are now uploaded to: https://icts-yebes.oan.es/slr
- Description of all changes in technical report to be released soon

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) Technische Universität München

DGFI-TUM ILRS AC report

Mathis Bloßfeld

Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM)

ILRS Analysis Standing Committee Meeting 2022, Guadalajara, Spain

Operational products & Re-analysis 2020

Solution	time interval (as produced by MB)	Submission basis (to ILRS-A/-B)	Produced by DGFI-TUM?
v170	11.01.2018 – now	daily	
v70	13.01.2018 - now	weekly	
V230 (SSEM-PP)	09.01.1993 – 09.07.2022	once	
v40x (ITRF repro)	10.01.1983 – 02.01.2021	once	·

- > Since 2020, also a multi-satellite daily/weekly combination is computed on a routine basis (multiple applications)
- > Other routinely provided products
 - (weekly) orbit solutions for ILRS-A combination (LA-1/-2 ET-1/-2)
 - (weekly) orbit solutions for spherical satellites LRS, LR2, AJI, STA, STE, LTS
 - (daily) orbit predictions in CPFv2 format for LA-1/-2, ET-1/-2, LRS, LR2, AJI, STA, STE, LTS

- Analysis of spherical satellites (LA-1/-2, ET-1/-2, LRS, LR2, AJI, STA, STE, LTS, BLITS, GFZ-1, Westpac-1, Spinsat, ANDE-C/-P)
 - LA-1 since 1976
 - currently working on early years of STA and AJI

- Analysis of spherical satellites (LA-1/-2, ET-1/-2, LRS, LR2, AJI, STA, STE, LTS, BLITS, GFZ-1, Westpac-1, Spinsat, ANDE-C/-P)
 - LA-1 since 1976
 - currently working on early years of STA and AJI
 - zoom into 2018-2023 time period reveals higher level of accuracy of LA-1/-2 and ET-1/-2 compared to LEOs

- Analysis of spherical satellites (LA-1/-2, ET-1/-2, LRS, LR2, AJI, STA, STE, LTS, BLITS, GFZ-1, Westpac-1, Spinsat, ANDE-C/-P)
 - LA-1 since 1976
 - currently working on early years of STA and AJI
 - zoom into 2018-2023 time period reveals higher level of accuracy of LA-1/-2 and ET-1/-2 compared to LEOs
 - New LARES-2 satellite implemented in DOGS-OC
 - Very good quality of LARES-2 data
 - TS and RBs of LARES currently used
 - Mean SLR RMS: 1.27 cm (based on standard sol setup)
 - Up to now, less than 0.5 % outliers reduced every 7d arc

- Analysis of non-spherical satellites (TOPEX/Poseidon, Jason-1/-2/-3)
 - very high consistency over all missions
 - linearly increasing accuracy

ПΠ

- Model updates within DOGS-OC
 - NT-L (ATM+OCN+HYD): GGFC (stations)
 - NT-L (ATM+OCN+HYD): ESMGFZ (stations) + AOD1B RL06 + HSD1B (satellite)
 - New ocean tide models implemented (EOT20, FES2014b.v1)
 - New IERS C04 format implemented (currently used at 0h epochs! → problems when witching to 12h?)
 - "New" CRD v2 format directly imported into DOGS-OC now → advantage of extensive metadata usage
 - Several **DOGS-OC-internal refinements** (e.g., code optimization, unified type definitions, etc.)
- > Critical issue is the sensitivity of the routine procedures on input data errors (e.g., format issues, non-availability)

DTRF2020 preliminary solution

DTRF2020 station network: discontinuities

- for the DTRF2020, about 1880 observing stations are processed
- > GNSS provides by far the largest number of stations

DTRF2020 station network: discontinuities

- Stations sorted by length of observation time span
- SLR and VLBI provide a solid basis of overlapping station observation time spans of 15 years and more
- The large number of discontinuities leads to a fragmentation of GNSS and in particular DORIS TRF
- → drift changes in translation time series at reference epoch
- Long-term stability of TRF can be ensured only by a combination of station velocities of
 - solution numbers or
 - intra-technique co-locations
- How to decide, which velocity constraints shall be applied when TRF solutions are unstable?

2010

2020

1990

2000

1990

2000

2020

2010

Datum realization of DTRF2020 – origin and orientation

ПΠ

DTRF2020 origin

Realized from the full history of SLR observation data

DTRF2020 orientation

By no-net-rotation conditions for positions and velocities w.r.t. DTRF2014 using a subset of globally distributed GNSS stations; reference epoch 2010.0

Datum realization of DTRF2020 - scale

> VLBI, SLR and for the first time GNSS provide an independent scale

Analysis of scale agreement

> by solving DTRF2020 solutions setting up individual scale parameters for GNSS, SLR and VLBI or both of them.

Results

- VLBI and GNSS: agree within 0.25 mm (epoch 2010.0) and 0.05 mm/yr
- SLR: small offset and drift w.r.t. GNSS and VLBI of 2.2 mm (epoch 2010.0) and -0.1 mm/yr
- \rightarrow SLR does not affect the DTRF2020 scale
- → But to keep the small offset and drift "visible" for further studies, DTRF2020 scale is realized from VLBI and GNSS only.
- \rightarrow no decision about "right" or "wrong"

Relevance of SLR for geocentric epoch reference frames

- The geodetic parameter groups estimated from SLR are interdependent
- The quality and stability of derived datum parameters suffers from the inhomogeneous station distribution and non-continuous station operation, the so-called network effect of SLR (e.g., Collilieux et al., 2009)
- The relevance of stable datum parameters increases significantly in the view of epoch reference frames (ERFs; e.g., Bloßfeld et al., 2015)
- Filter approaches can help to overcome some of the problems related to the network effect (e.g., Kehm et al., 2022)
- However, a reliable de-correlation of the parameter groups can be achieved only by extending the SLR ground and space segments (e.g. Bloßfeld et al., 2018)

Correlations between geodetic parameter groups

SLR-based origin realisation for a combined ERF

SLR simulation studies on an additional SLR system in Australia

Weekly SLR-derived epoch reference frames

5 satellites (incl. LARES) time span: 2014-12-28 to 2019-07-06

Average of two simulation runs with 15 % or 30 % minimum station performance for the new stations

McDonald is most beneficial for ERPs and the TRF origin, (WRMS improvement up to 4% in y_{pole} and 8% in t_z) \rightarrow station fills a significant gap in the current SLR network

McDonald and **Hobart** both yield improvements in the origin, predominantly t_z (8% and 3%, WRMS reduction resp.) \rightarrow stations improve the weak observation geometry for this parameter

Adding **two of the stations** yields improvements in LOD (up to 3 % WRMS reduction)

Adding all three stations together yields the largest improvement in scale (3 % WRMS reduction)

Further improvements for combined ERFs can be expected from additional co-locations with *GNSS and VLBI*

Federal Agency for Cartography and Geodesy

BKG Report

D. Koenig, U. Meyer (AIUB), D. Thaller

Work Done

• Introduction of ITRF2020 pending

moving to new machine in 08/09 2022

new Bernese version released

• Modified solution generated

based on ITRF2020 reprocessing modified datum definition: **NNR** instead of Loose Constraints output: 1468 weekly solutions (time series) internally called **"BKG-SLR-2020**"

Results: Solution Statistics

"BKG-SLR-2020"

D. Koenig et al., ILRS ASC Meeting 2022-11, Yebes, Spain, Nov 6, 2022 | Page 3

Federal Agency for Cartography and Geodesy

Thank you for your kind attention!

Bundesamt für Kartographie und Geodäsie Referat G1 Richard-Strauss-Allee 11 60598 Frankfurt am Main

Dr. Daniel Koenig daniel.koenig@bkg.bund.de www.bkg.bund.de Phone +49 69 6333 - 1

Mathis Bloßfeld

Deutsches Geodätisches Forschungsinstitut, Technische Universität München (DGFI-TUM)

ILRS Analysis Standing Committee Meeting 2022, Guadalajara, Spain

CRDv2 issues

- Since August, 1st, 2022, the ILRS uses a new conventional format for the SLR observations, the CRD v2 format
- On the ILRS website, a detailed description of the CRD format v2.01 is provided to the user (https://ilrs.gsfc.nasa.gov/docs/2022/crd_v2.01e3.pdf)
- > DGFI-TUM ILRS AC now **directly imports the CRD v2** format into its POD s/w
- > Up to now, different errors and inconsistencies to the official format description arise
 - several variables are "na" but only some variables are explicitly allowed to be "na" in the format description

CRDv2 issues – e.g. lageos1_202210.np2

- Only one example for numerous other cases
 - In principle, easy to fix for either the ACs or the stations (but only if they know about this "error")

66

30	Pointing Angles	(deg/sec)				
30	Pointing Angles	Other 30 Check		The record length must contain 7 (9) fields	Error	
40	Calibration	40	"40"	"40"	Error	
40	Calibration	Seconds of day		[0,,86400]	Error	Normal data would be 00000 through 86399. A leap second would use 86400.
40	Calibration	Seconds of day		Within 2 hours of the pass E.g. H4 start date/time - $2hr \le 40$ record seconds of day \le H4 end date/time + $2hr$	Warning	
40	Calibration	Type of data	[0,1,2,3,4,5]	[0,,5]	Error	
40	Calibration	System configuration id		Valid System configuration ID must be in C0 record	Error	
40	Calibration	Number of data points recorded	[<mark>na</mark> ,0,1,]	[<mark>na</mark> ,,1.e8]	Warning	
40	Calibration	Number of data points used	[<mark>na</mark> ,0,1,]	[<mark>na</mark> ,,1.e8]	Warning	
40	Calibration	One way target distance (m)	[<mark>na</mark> ,0,1,]	[<mark>na</mark> ,0.0,1.e4]	Warning	
40	Calibration	Calibration System Delay (ps)		[-1.e5,,1.e6]	Error	
40	Calibration	Calibration Delay Shift (ps)		[-6671,,6671]	Error	Based on 1m
40	Calibration	RMS of raw system delay	[<mark>na</mark> ,,2.e5]	[<mark>na</mark> ,0,,667]	Error	Based on 10cm

ILRS Consolidated Laser Ranging Data Format (CRD)

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

CRDv2 issues

- Since August, 1st, 2022, the ILRS uses a new conventional format for the SLR observations, the CRD v2 format
- On the ILRS website, a detailed description of the CRD format v2.01 is provided to the user (https://ilrs.gsfc.nasa.gov/docs/2022/crd_v2.01e3.pdf)
- > DGFI-TUM ILRS AC now **directly imports the CRD v2** format into its POD s/w
- > Up to now, different errors and inconsistencies to the official format description arise
 - several variables are "na" but only some variables are explicitly allowed to be "na" in the format description
 - CRDv2 record "21": sky temperature should be of type integer, not real

CRDv2 issues – e.g. lageos1_202209.np2

- > The sky temperature in [K] is defined to be of type integer, some stations write them as real
 - In principle, easy to fix for either the ACs or the stations (but only if they know about this "error")

	1		1			1	11 11849.4064051999999 0.044661883851 new 2 120.0 28 29.0 -0.660 0.256 na 4.67 0 na							
21	Meterological Supp	Weather Condictions	two-digit SYNOP/WMO code or description, e.g. "rain"			replaces Precipitation Type	20 11935.807 711.40 288.70 74.0 11 11935.806527600000 0.045721396303 new 2 120.0 49 35.0 0.172 -0.347 na 8.17 0 na 20 12001.207 711.40 288.80 74.0 11 12001.207 711.40 288.80 74.0 11 12001.207 711.40 288.80 74.0 6 39.0 1.004 -0.347 na 8.17 0 na 11 12001.206583400000 0.046591755360 new 2 120.0 6 39.0 1.004 -0.326 na 1.00 0 na 30 new 37.1 0.201 -0.078 na 0 1 18 H1 CRD 2 2022 09 17 22 122 122 123 5TL3 7825 90 01 4 1LRS H2 STL3 7825 90 01 4 1LRS 1300001 1155 8820 0 1 1 1							
21	Meterological Supp	Visibility (km)		[<mark>na,0</mark> ,,100]	Warning		H4 1 2022 09 16 03 32 01 2022 09 16 03 39 34 0 0 0 0 1 0 2 0 C0 0 532.10 IDAA IDAB IDAJ IDAV IDAS IDAM IDAC C1 0 IDAB Nd-YAG 1064.00 60.00 10.00 12.0 10.00 1 C2 0 IDAJ CSPAD 532.00 20.00 11.0 100.0 ECL 12.0 2.00 90.0 0.1 na na na 0							
21	Meterological Supp	Sky Clarity (zenith extinction coeff)		[<mark>na,0</mark> ,,100]	Warning		C3 0 IDAV TrueTime_XLi TrueTime_OCXO MRCS na 0.2322 C5 0 IDAS eosTrackingServer.exe 1-0-5 Profits 7.0 C6 0 IDAM Vaisala PTB330 M4620100 Vaisala HMP155 P4711022 Vaisala HMP155 P4711022 C7 0 IDAC STN 69.5920 1.22 0.0090 0.020 Profits 7.0							
21	Meterological Supp	Atmospheric seeing (arcsec)		[<mark>na,0</mark> ,,100]	Warning		H5 1 22 091500 HTS 25800 40 7230.000000000000 0 IDAA 11682 3555 69.592 158295.5 -1.3 17.7 0.100 -0.400 13.3 2 2 0 3 0.0 41 86220.000000000000 0 IDAA 5419 1645 69.592 158296.2 88.7 18.0 0.100 -0.400 13.3 2 3 0 1 0.0 41 14640.0000000000000 0 IDAA 6263 1910 69.592 158294.8 86.7 17.3 0.100 -0.400 4.0 2 3 0 2 0.0							
21	Meterological Supp	Cloud cover (%)		[<mark>na,0</mark> ,,100]	Warning		11 13071.395525570764 0.051231271156 IDAA 2 120.0 20 45.40 0.73 -0.65 -6.90 0.39 0 0.0 11 13129.422169173597 0.050467759448 IDAA 2 120.0 33 43.80 0.00 -0.28 63.40 2.11 0 0.0 30 12721.269055999999 83.808046 20.014733 0 2 0 na na 30 12722.639700000000 83.840092 20.055864 0 2 0 na na							
21	Meterological Supp	Sky Temperature (deg K)		[220,300]	Warning		30 13174.462563999999 97.757092 33.727743 0 2 0 na na 20 12715.349213000000 913.79 285.93 55.8 0 21 12715.349213000000 5.80 217.15 clear na na na na 256.65 20 12744 730213000003 13.80 285.91 55 2 0							
21	Meterological Supp	Other 21 Check		The record length must contain 9 (10) fields	Error		21 12744.730213000003 4.60 265.28 clear na na na na 257.85 20 13164.751243000002 913.69 286.01 52.2 0 21 13164.751243000002 4.30 275.02 clear na na na na 250.15							
30	Pointing Angles	30	"30"	"30"	Error		H8 H1 (PD 2 2022 00 10 12							
30	Pointing Angles	Seconds of Day		[0,,86400]	Error	Normal data	H2 GRSM 7845 78 1 7 ILRS H3 lageos1 07603901 1155 8820 0 1 1							
						65		13825,1						

ILRS Consolidated Laser Ranging Data Format (CRD)

CRDv2 issues

- Since August, 1st, 2022, the ILRS uses a new conventional format for the SLR observations, the CRD v2 format
- On the ILRS website, a detailed description of the CRD format v2.01 is provided to the user (https://ilrs.gsfc.nasa.gov/docs/2022/crd_v2.01e3.pdf)
- > DGFI-TUM ILRS AC now **directly imports the CRD v2** format into its POD s/w
- > Up to now, different errors and inconsistencies to the official format description arise
 - several variables are "na" but only some variables are explicitly allowed to be "na" in the format description
 - CRDv2 record "21": sky temperature should be of type integer, not real
 - Critical: epoch of 1st observation in some passes

CRDv2 issues – e.g. lageos1_202210.np2

ТШ

- > The epoch of the 1st observation in some passes is not correct
- CRDv2 record "H4" gives start/end day
- CRDv2 record "11" gives Sec_of_Day
- > pass starts at Oct. 7th (H4) but the seconds count from Oct. 8th (11) → wrong epoch!!!
- This should be fixed by the stations!

H1 CRD 2 2022 10 10 07												
H2 GRZL 7839 34 02 4	EUROLAS											
H3 lagecs1 /603901	1155 08820 0	11										
H4 (1 2022 10 7 23 39	40 2022 10 8 0	41 40	000010	20								
C0 0 532.000 0902 26Hz C_SPAD1 GPS na VSLA na												
C1 0 2kHz Nd:Van 1064 2000 0.400 10 10 1												
C2 0 C_SPAD1 SPAD 532.0 20 5.0 400 +1V 10 0.3 35 200 WinClean2.2 na na na												
C3 0 GPS HP58503A HP58	503A Graz_Dassaul	tna 0	.077									
C6 0 VSLA Vaisala PTU3	C6 0 VSLA Vaisala PTU300 T0210974 Vaisala PTU300 L1110324 Vaisala PTU300 L1110324											
20 675 963.56 286.63	93.1 1											
23 1714 963.44 286.64	93.2 1											
41 675 0 0902	10000 7951	1.742	112054.7	1.0	16 -0.018	-0.674	04001n	а				
41 (1714 0 0902	10000 7460	1.742	112055.6	1.0	16 0.023	-0.712	04002n	a				
40 1194 0 0902	20000 15411	1.742	112055.1	1.0	16.0 0.003	-0.693	0.04203n	а				
11 690.770063843578	0.041292982006	0902 2	120.0 93	08 34.0	0.050 -0.953	1.9	3.9 0 na					
1 <mark>1 920.32</mark> 6963856816	0.042050433668	0902 2	120.0 31	.30 36.4	0.113 -1.193	-25.4	1.3 0 na					
1 <mark>1 1350.66</mark> 3163855657	0.046075201731	0902 2	120.0 28	81 36.1	0.278 -1.019	-20.2	1.2 0 na					
1. 1671.6 <mark>4</mark> 6563850343	0.050791765614	0902 2	120.0 14	59 32.2	0.173 -0.655	-3.6	0.6 0 na					
11 1696.292963846028	0.051197289134	0902 2	120.0 21	.71 34.5	0.129 -0.960	-7.5	0.9 0 na					
50 0902 34.7 0.126	-0.987 -9.5 1											
H8												

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München