Introduction

The accompanying C++ code is a fragment of code that has been designed to manage prediction generation using a number of types of orbital elements (e.g. IRVs and TLEs) as well as the new consolidated prediction format (CPF) prediction files for various kinds of targets. This fragment of C++ code is provided to give some assistance in the development of user code for use with CPF files only, and for target types that the CPF supports. 

This code fragment is not compilable and the author takes no responsibility for any errors or omissions. It is assumed that users will have their own infrastructure libraries, classes and methods for dealing with time, file handling, error handling and so forth. Some placeholder method names have been inserted where this code had interfaced to the author’s own libraries. It is felt the intention of these methods is clear enough to provide some useful guidance. Names such as YourFile, YourExceptions, YourTimeDateClass etc. have been used.

The following provides a brief overview of the system architecture.

The Track Class
Track objects contain “universal” ephemeris data that defines the position (and velocity) of a given target over a given period in the ITRF reference frame. This diagram shows the class hierarchy.


[image: image1]
Real track types are descended from a Track base class. The OrbitalTrack contains one or more time series of position, velocity and other data in ITRF coordinates and is used for all targets for which a prediction generator is available to generate these data.  It is the base class for the LunarTrack object which also supports “offset” pointing data and methods, and for TransponderTrack objects which supports transponder targets and their associated data and methods.
To construct a track object, choose the type of objects, define a period for which the data is available, and a time interval that is used to control the density of generated track data, e.g. for target “Target” that requires a prediction generator we have 

eos::OrbitalTrack target( startPeriod, endPeriod, timeInterval);
The Prediction Generation Classes
The prediction generation classes create and store predicted ephemeris data in the required Track object using available orbital elements or other data. The Track object will contain no information about the source of the prediction data. 

A Predictor class provides the prime interface for the generation of predictions. Depending on the required method of prediction generation and which elements are to be used, different subclasses may be developed. Here we shown only the PredictorCPF  in any detail, and only refer briefly to a PredictorIRV sub-class which use IRVs.

Having constructed the required Track object, create a predictor object of the appropriate subclass and define the source of the element data to use. For example, using CPF files to generate predictions for our target object, 

eos::PredictorCPF predictor( &target, “Target”, “cpf_directory”);
if( !predictor.generatePredictions() )


handle error
The target object should now contain the necessary data and the predictor can be deleted.

Site Data
The track object only contains “universal” data. Therefore to determine the position and velocity of the target with respect to a given location or site (e.g. a tracking station) then create one or more SiteHandle objects containing information about the sites of interest. For example, for site “Site” create

eos::SiteHandle site( “Site”, latitude, longitude, height);

Position and velocity data at a given epoch (within the defined period) relevant to the given site will be determined using the following method.

target.calculatePosition( site, epoch );

This data can then be accessed, via the associated SiteHandle object. Thus we might have
double azimuth   = site.azimuthRadian();

double elevation = site.elevationDegree();

double range     = site.rangeMm();

The design as attempted to decouple the Predictor from the underlying element classes and unless the client specifies particular elements to be used in generating predictions, specific element headers should not be required.

[image: image2]


Other Track Types



   

    Track











SiteHandle





OrbitalTrack







TransponderTrack







LunarTrack





Predictor



PredictorIRV





PredictorCPF



Other Predictor Types



Prediction

Generator



GJIntegrator





CPFAllocator



Other generator types



Element



IRVs



CPF



Other Element

types





Track





