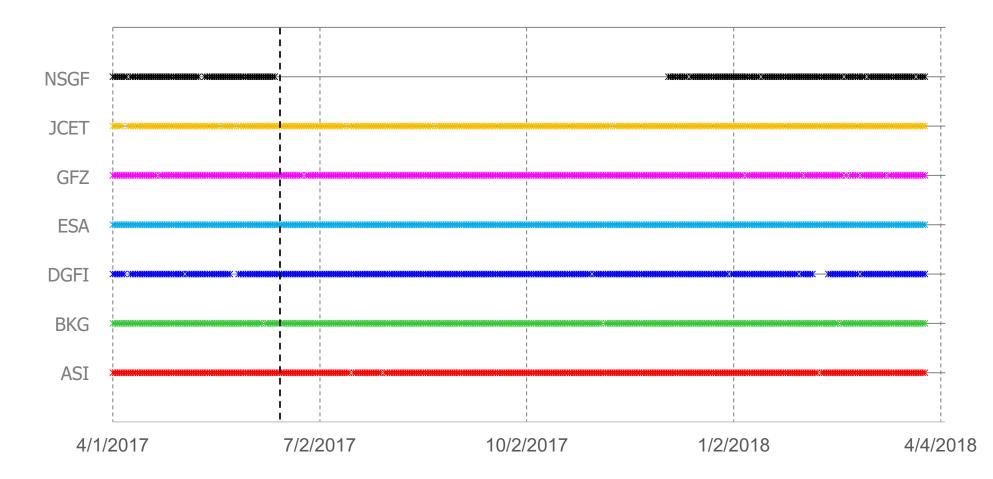


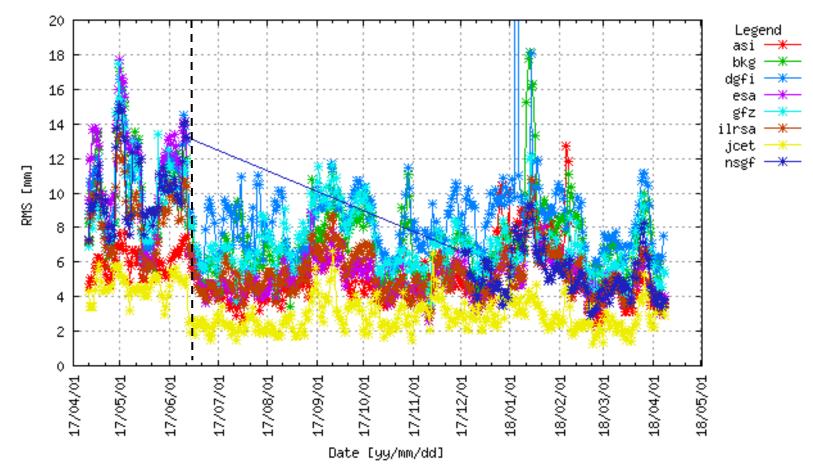
ASIAC&CC report

V. Luceri, M. Pirri e-GEOS S.p.A., CGS – Matera

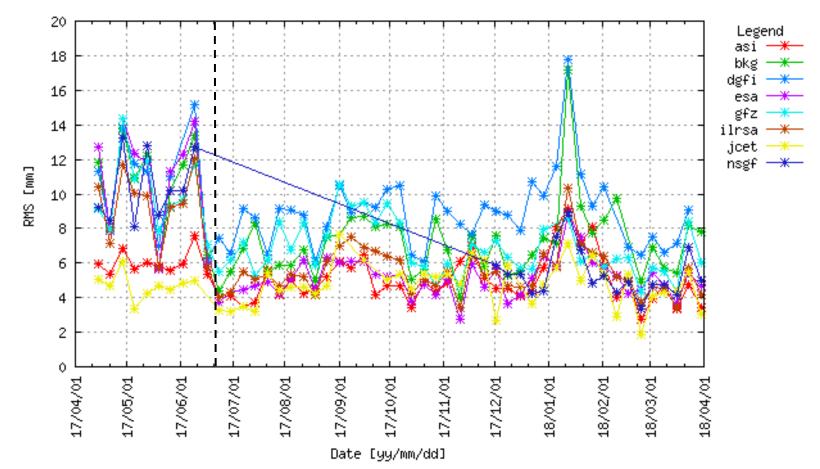
G. Bianco Agenzia Spaziale Italiana, CGS - Matera

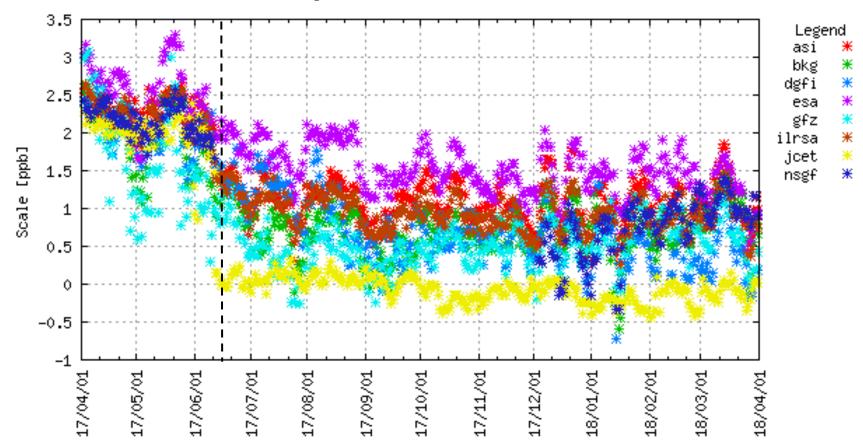

ILRS ASC Meeting, 12 April 2018, Vienna

- ACs performance check
 - Data submissions
 - 3D wrms of the residuals w.r.t. SLRF
 - Scale factor
 - Geocenter motion
 - LOD
 - Combination scale factor
 - Orbits: RMS of residuals w.r.t. combination
 - ILRS ACs orbit agreement
- Systematic Error Pilot Project
 - ACs time series v220
 - Preliminary analyses

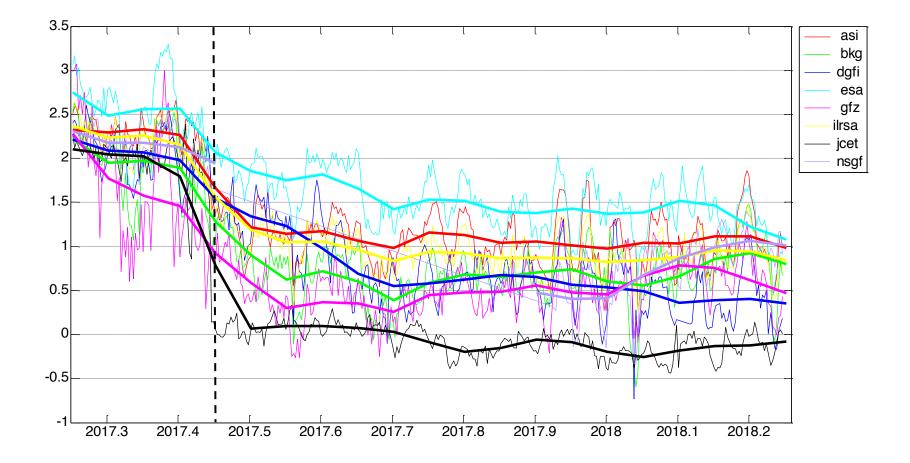


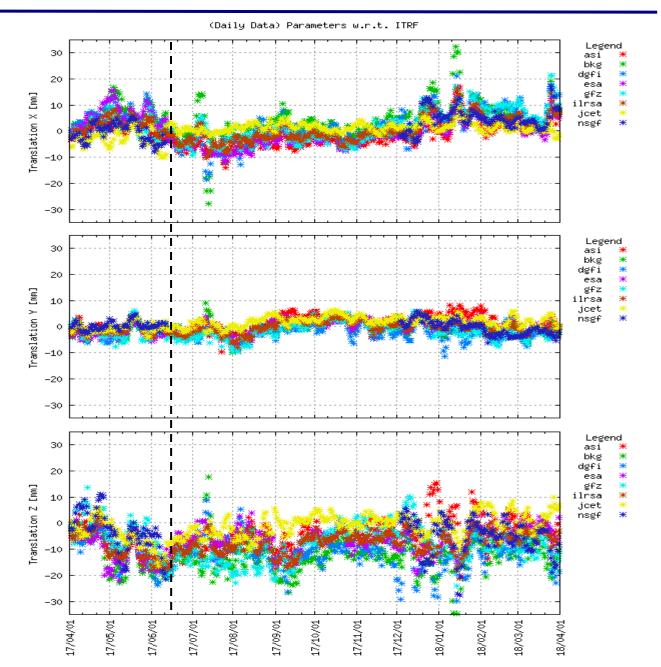
ACs time series using SLRF2014 as *a priori* are the official products since **15** June 2017: daily (v170) and weekly (v70)



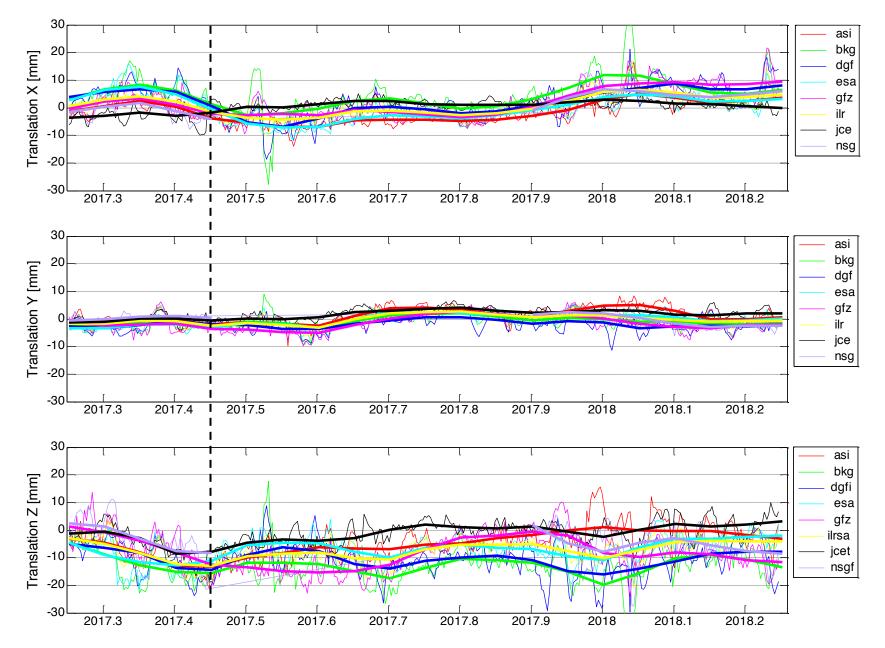

3D wrms of the residual w.r.t. SLRF2008/SLRF2014 CORE SITES

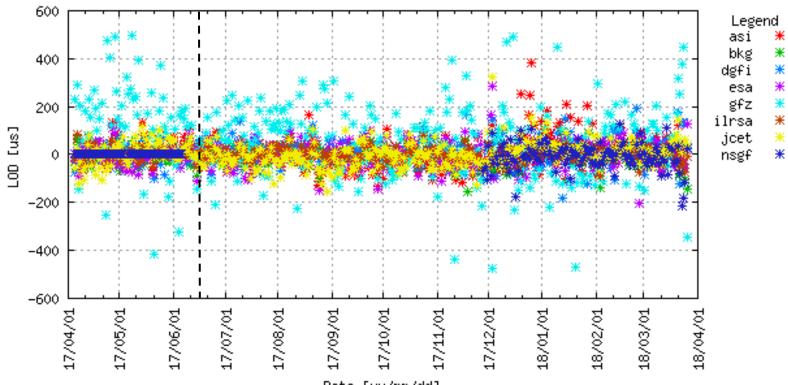
3D wrms of the residual w.r.t. SLRF2008/SLRF2014 CORE SITES

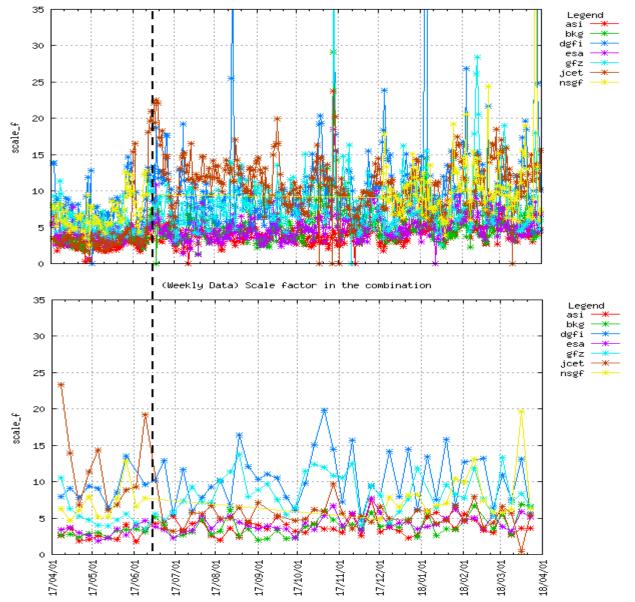



(Daily Data) Parameters w.r.t. ITRF

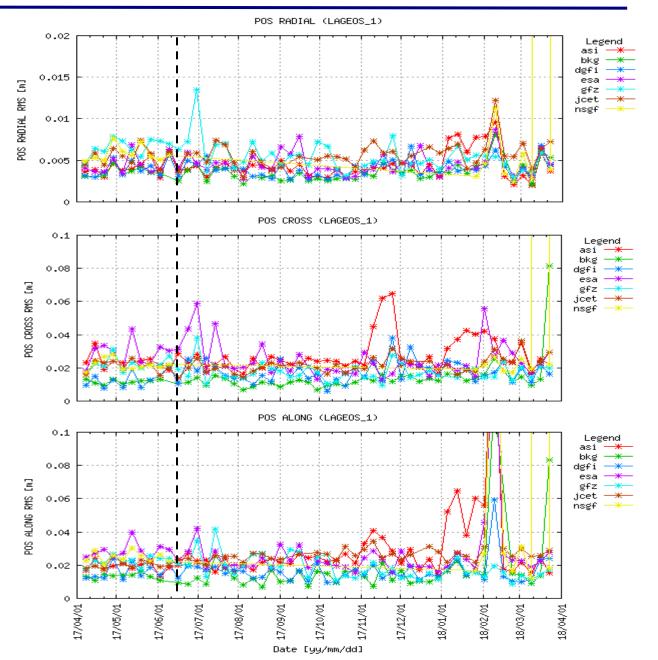
Date [yy/mm/dd]

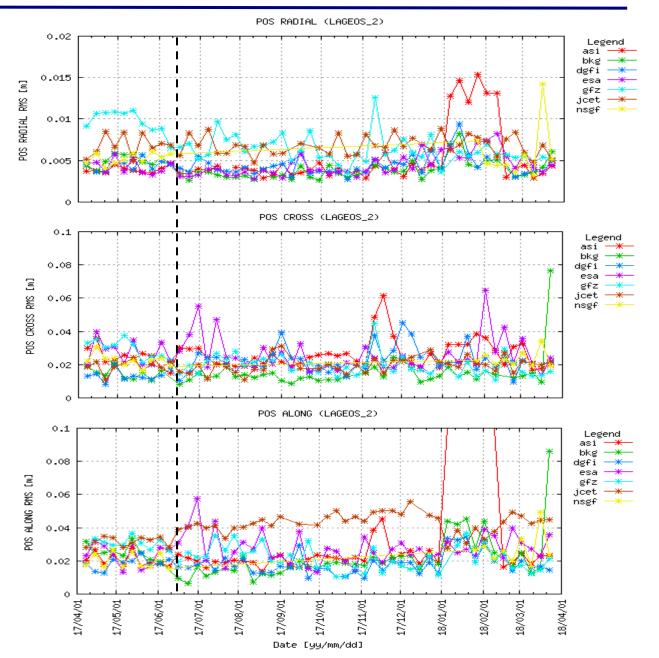



Geocenter motion from daily solutions

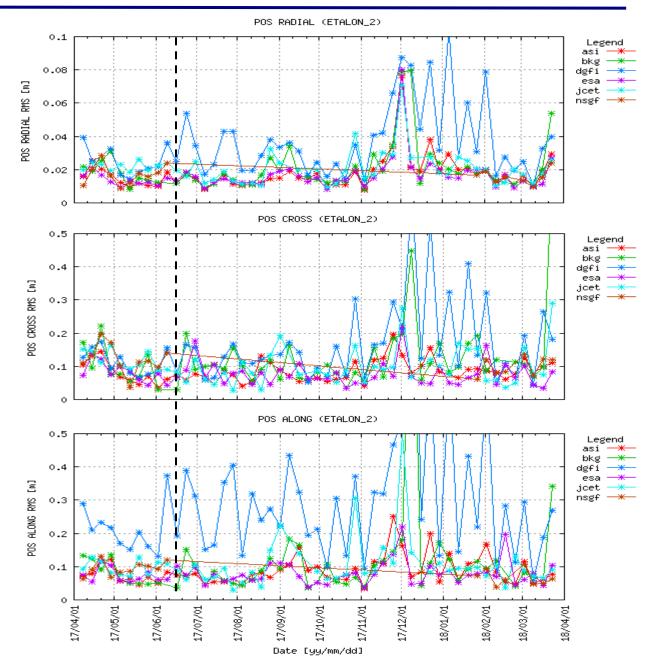


(Daily Data, day = 1) EOP w.r.t. USNO


Date [yy/mm/dd]


(Daily Data) Scale factor in the combination

LAGEOS1 orbits – RMS of residuals w.r.t. combination


LAGEOS2 orbits – RMS of residuals w.r.t. combination

ETALON1 orbits – RMS of residuals w.r.t. combination

ETALON2 orbits – RMS of residuals w.r.t. combination

Satellite	Radial [mm]	Cross-track [mm]	Along-track [mm]				
LAGEOS1	5	20	21				
LAGEOS2	5	22	25				
ETALON1	18 16*	95 91*	104 85*				
ETALON2	20 18*	100 93*	113 87*				

Mean RMS over the period 2017/04/01-2018/03/24

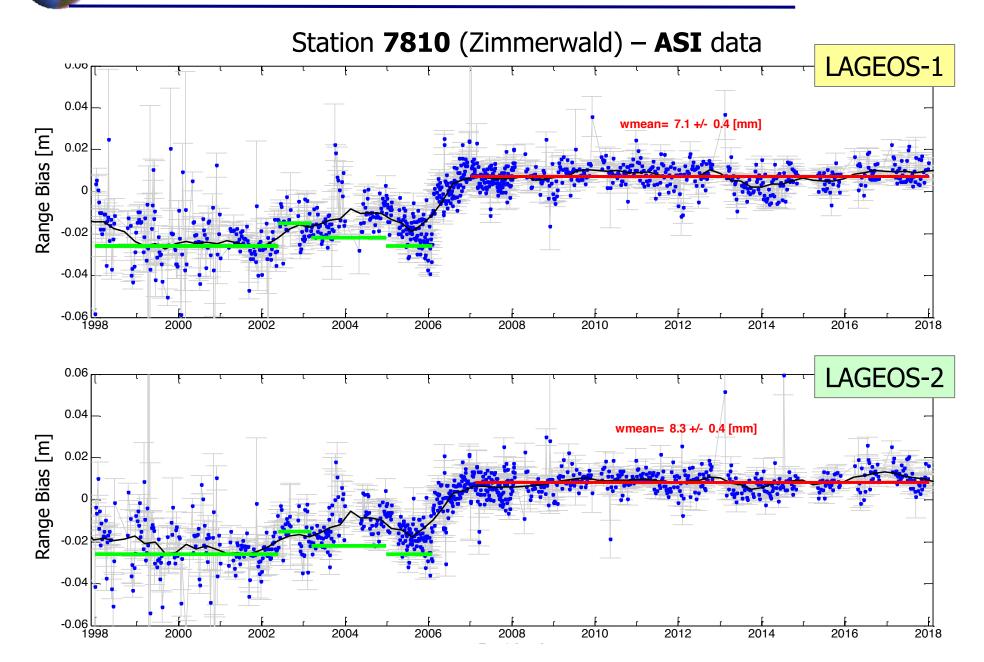
* DGFI not included

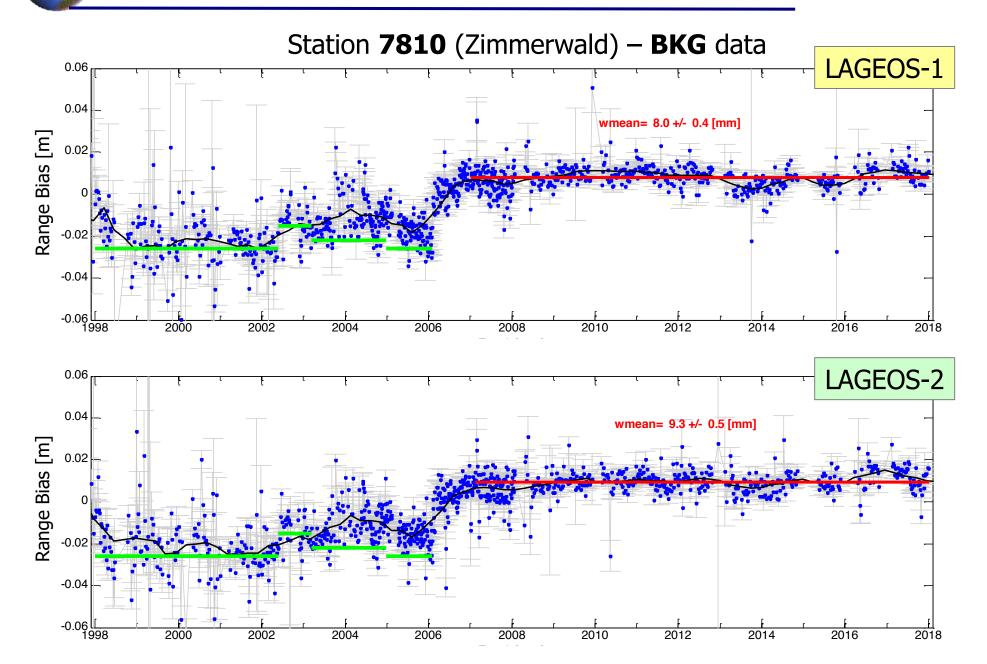
SYSTEMATIC ERROR PILOT PROJECT

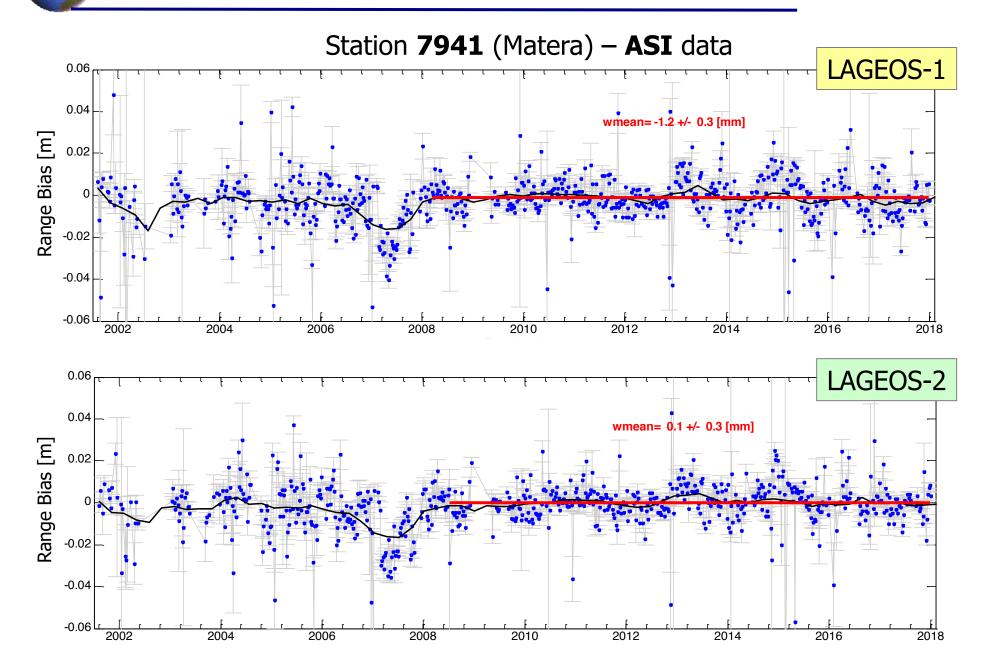
- Weekly estimation of coordinates, EOP and biases
- Time frame: 1993-2018
- Data: L1 and L2
- time series with separate biases
- New conventions for wavelength indication in the SINEX files

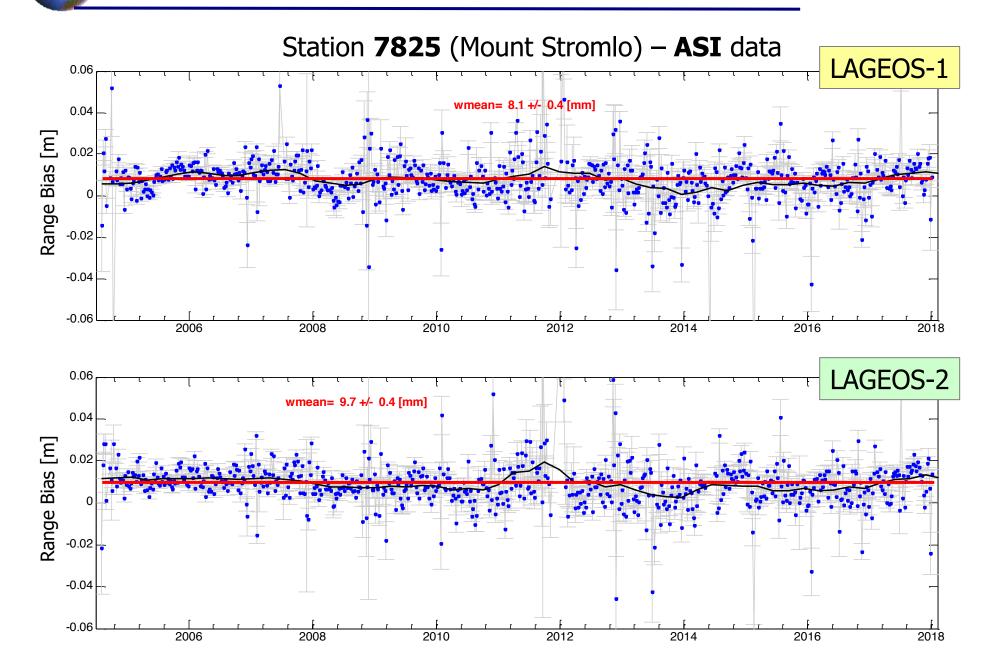
System	CDP ID#	SOLN Flag	Wavelength				
Concepcion	7405	400	423				
Concepcion	7405	800	846				
Zimmerwald	7810	400	423				
Zimmerwald	7810	500	532				
Zimmerwald	7810	800	846				
SOS Wettzell	7827	400	425				
SOS Wettzell	7827	800	850				
Matera	7941	300	355				
Matera	7941	500	532				

Use the hundreds of the wavelength instead of 1,2,3, etc.




AC time series v220 uploaded at EDC

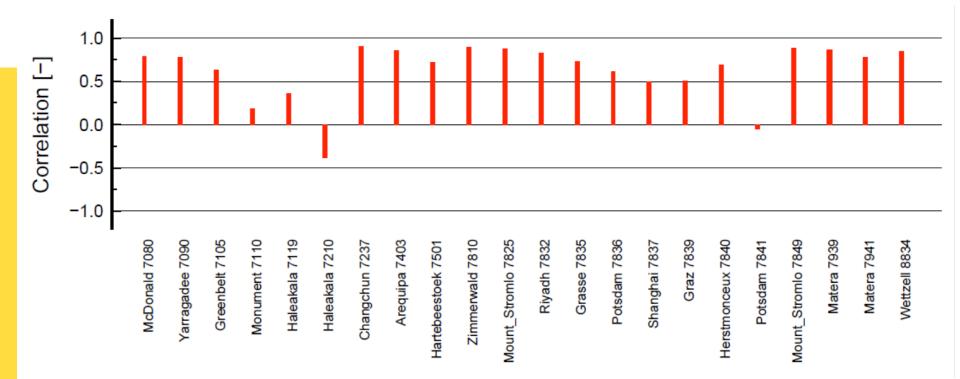

AC		Start	Stop		submission date	missing files [yymmdd]			
ASI		1993.01.09	2018.01.06	٧	14/03/2018	none			
BKG	۷	1993.01.09	2018.01.06	٧	23-26/03/2018	none			
DGFI									
ESA		1993.01.09	2018.01.06	٧	03/04/2018	none			
GFZ		1993.01.09	2018.01.06		23/03/2018	none			
JCET		1993.01.09	2018.01.06	>	27-29/03/2018	none			
NSGF		1993.01.09	2018.01.06	Ν	13/03/2018	930710, 941231, 951230, 010929, 060107, 120707, 170107			


1305 files in the common time

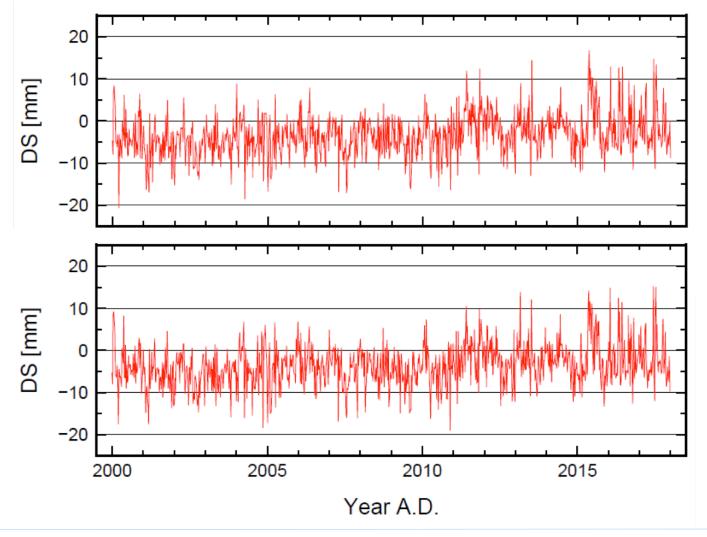

(1298 files for NSGF)

- Deep analysis of each single AC time series
- Combination
- Site by site investigation to detect discontinuities in the time series
- Compute biases and build the «bias table»
- Unique systematic error for both LAGEOS?

Federal Agency for Cartography and Geodesy


BKG Report

Daniel Koenig, Ulrich Meyer, Daniela Thaller


Activities since Riga WS

- Processing 1993/01-2018/02 for ILRS SSEM
 - new IERS mean pole needs to be implemented
 - time-variable gravity field implementation needs to be optimized to be more flexible
- Processing 2000/01-2017/12 for EGU2018
 - C04_14 used as a priori ERP
 - significant discrepancies with PM detected: issues w. C04_14?
 - solutions: (1) sep. L1/L2 RB (2) comb. LC RB
 - focus on RB time series, correlations
 - (1) revealing high correlations between L1 and L2 RB
 - -> issues with Mon. Peak, Haleakala, Potsdam
 - (1) vs (2) without significant difference in global scale

Selected Results (1)

Selected Results (2)

Contact:

Bundesamt für Kartographie und Geodäsie (BKG) Richard-Strauss-Allee 11 60598 Frankfurt, Germany

Daniel Koenig daniel.koenig@bkg.bund.de www.bkg.bund.de

Status and future plans of the ILRS Analysis Center at DGFI-TUM

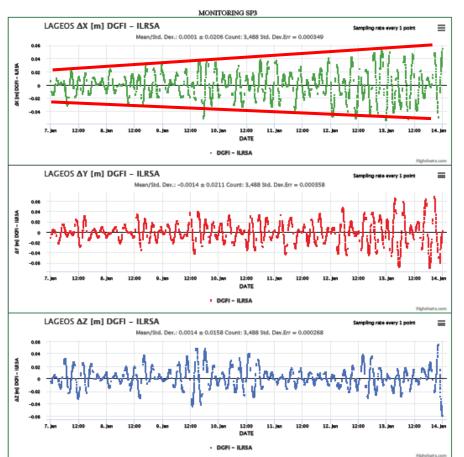
Mathis Bloßfeld

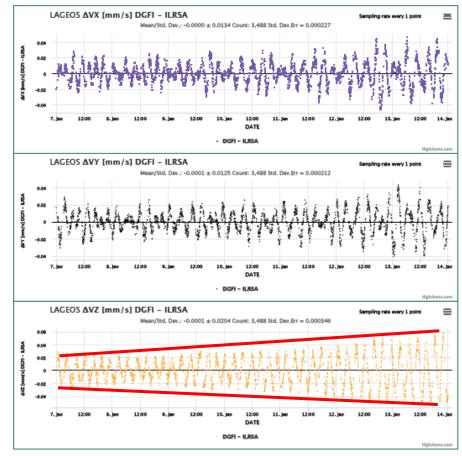
Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) Technische Universität München

ILRS ASC meeting, TU Vienna Vienna, 2018-04-12

Current situation at DGFI-TUM (I)

- Horst retired on April 1st (he is still available via email and telephone)
- ➢ since then, I am responsible for the ILRS AC at DGFI-TUM
- up to now, Horsts programs are still used for the operational service (daily, weekly submissions)


BUT:


- we are currently working on new versions of DOGS-OC and DOGS-CS
- ➢ DOGS-OC 5.1
 - able to process DORIS data; currently about 1.2mm/sec orbit RMS for Jason-2 (goal: 0.4 mm/sec); about 5cm orbit RMS for 7-day SLR arc
 - multiple changes in the program, implementation of HF EOP models, implementation of FORTRAN 2008 standards still ongoing
- DOGS-CS 5.1 (used for ILRS, IVS as well as for IERS ITRS CC)
 - refined treatment of parameter epochs

Current situation at DGFI-TUM (II)

➢ Increase of orbit RMS caused by solar radiation errors? → LA-1/2 7-day arc comparison (provided by JCET)

SLR constellation solutions at DGFI-TUM (I)

- Data used between 1978 and 2017
- Up to 11 spherical satellites
- Consistent estimation of TRF, EOP, and gravity field
- 11-sat. solution vs. 4-sat. solution:
 - Improvement of TRF: up to 20% less scatter in origin and scale time series
 - station repeatability improves up to 20% in hz and 8% in h
 - BUT: inclusion of Ajisai degrades solution due to "wrong/bad" CoM correction
 - about 15% improvement of pole, 10% for LOD
 - especially gravity field coefficients are improved significantly!!

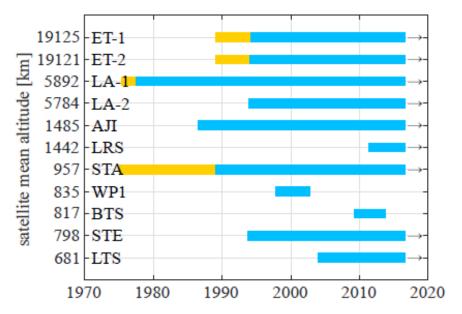


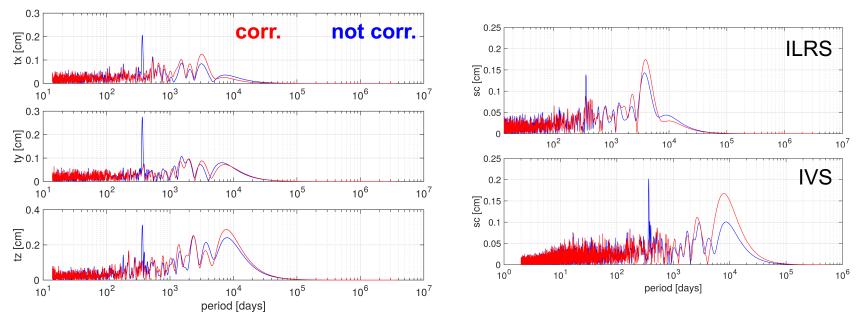
Fig. 1 Time intervals of used SLR observations (blue boxes) to different spherical satellites. The orange boxes indicate time intervals of unused observations with lower accuracy.

SLR constellation solutions at DGFI-TUM (II)



Fig. 15 Improvements of the WRMS over the weekly gravity field coefficient solutions w.r.t. the four-satellite solution. Coefficients marked in gray have not been estimated. Note: in the solution 4-sat. + STE, $S_{3,2}$ is degraded by 13 % (coefficient marked in black).

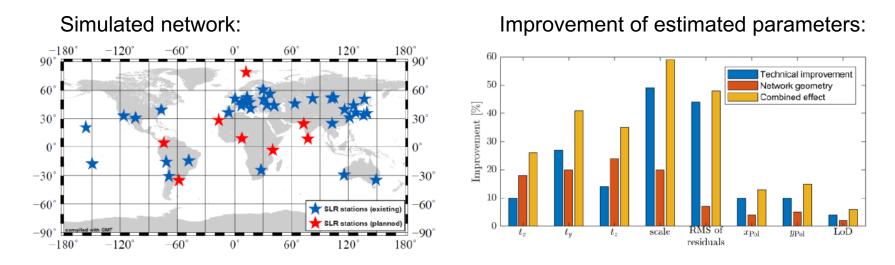
SLR constellation solutions at DGFI-TUM (III)


Table 6 Statistical quantities (WRMS, wmean) of specific fundamental geodetic parameters of selected SLR constellations. All values are computed for the time interval between February 2012 and April 2017, where in total 9 satellites were in orbit (frequently observed). 10-satellite solution means 11-satellite solution without Ajisai. For each solution, the first column gives the statistical quantity itself and the second column gives the improvement of its absolute value in percentage w.r.t. the standard ILRS solution setup (our 4-satellite solution). (*) marks the mean WRMS improvement over all Stokes coefficients $C_{(n,m)}$. Green color means improvement, red color means degradation, WR means WRMS, wm means wmean.

		4-sat.	10-sat. 11-sat.		4-sat.+AJI 4-sat.+STA			STA	4-sat.+	STE	4-sat.+LTS		4-sat.+LRS			
		(ref.)	value	[%]	value	[%]	value	[%]	value	[%]	value	[%]	value	[%]	value	[%]
	WR (Tx)	6.2	4.7	24.2	4.7	24.2	6.0	3.2	5.4	12.9	5.3	14.5	5.5	11.3	5.3	14.5
	wme (Tx)	3.3	6.1	84.8	5.6	69.7	1.6	51.5	2.8	15.2	3.5	6.1	3.0	9.1	3.3	0.0
	WR (Ty)	6.3	5.0	20.6	5.4	14.3	6.3	0.0	5.7	9.5	5.6	11.1	5.7	9.5	5.5	12.7
	wm (Ty)	-4.6	-1.8	60.9	-2.3	50.0	-3.2	30.4	-3.3	28.3	-3.7	19.6	-4.6	0.0	-3.7	19.6
[mm]	WR (Tz)	9.8	8.6	12.2	6.2	36.7	7.5	23.5	9.5	3.1	8.1	17.3	9.5	3.1	9.0	8.2
	wm (Tz)	0.5	0.3	40.0	-1.1	120.0	-3.0	500.0	-1.2	140	-0.2	60.0	-0.3	40.0	0.0	100.0
\mathbf{TRF}	WR (Sc)	6.7	5.3	20.9	5.1	23.9	7.6	13.4	5.7	14.9	6.7	0.0	6.6	1.5	5.9	11.9
	wm (Sc)	4.7	2.9	38.3	8.8	87.2	16.0	240.4	5.0	6.4	4.5	4.3	5.2	10.6	4.3	8.5
	WR (north)	11.9	9.1	23.5	9.3	21.8	11.3	5.0	10.5	11.8	10.8	9.2	11.1	6.7	11.1	6.7
	WR (east) WR (height)	10.8 12.7	8.5 11.6	21.3 8.7	8.7 11.8	19.4 7.1	10.0 12.1	7.4 4.7	10.1 12.5	6.5 1.6	9.9 12.6	8.3 0.8	10.6 12.3	1.9 3.1	10.6 12.6	1.9 0.8
	(2)															
Ŧ	WR (x-pole)	0.385	0.318	17.4	0.320	16.9	0.360	6.5	0.356	7.5	0.366	4.9	0.361	6.2	0.414	7.5
ms/d]	wm $(x-pole)$	-0.107	-0.022	79.4	0.004	96.3	-0.053	50.5	-0.052	51.4	-0.079	26.2	-0.069	35.5	-0.102	4.7
	WR (y-pole)	0.387	0.295	23.8	0.305	21.2	0.355	8.3	0.352	9.0	0.353	8.8	0.355	8.3	0.384	0.8
[mas,	wm (y-pole)	0.165	0.065	60.6	0.027	83.6	0.035	78.8	0.099	40.0	0.118	28.5	0.134	18.8	0.193	17.0
EOP	WR (Δ LOD)	0.047	0.042	10.6	0.043	8.5	0.040	14.9	0.039	17.0	0.036	23.4	0.035	25.5	0.038	19.1
Ē	wm (Δ LOD)	-0.001	0.005	400.0	0.003	200.0	-0.006	500.0	0.009	800	0.002	100.0	0.004		0.001	0.0
\square	WR $(C_{(2,0)})$	2.0172	1.1322	43.9	1.0554	47.7	1.1151	44.7	1.2835	36.4	1.1945	40.8	1.2655	37.3	1.1813	41.4
9	WR $(C_{(3,0)})$	17.224	6.7620	60.7	1.2346	92.8	0.9831	94.3	14.726	14.5	8.4124	51.2	10.414	39.5	7.7003	55.3
Ļ	WR $(C_{(4,0)})$	6.9305	1.0032	85.5	0.8861	87.2	3.8998	43.7	4.0417	41.7	1.0756	84.5	1.7648	74.5	1.3144	81.0
GFC						70.0				00.1		50.0		41.0		e1 7
5	$WR^{\star}(C_{(n,m)})$			77.5		79.3		64.4		66.1		52.3		41.9		61.7

ПΠ

ILRS pilot projects


- > With our DGFI-TUM SLR constellation solution, we can contribute to all ILRS pilot projects
 - Estimation of low-degree SH of the gravity field
 - > Inclusion of LARES as a 5th satellite in our operational product development
 - > Discussion of a plan for the expansion of the targets used in operational products
 - > Revisit NT Atm. Loading & Gravity implementation as an internal PP
 - Ongoing research work motivated by DTRF2014 studies

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) | Technische Universität München

SLR simulation studies at **DGFI-TUM**

- Simulation of eight additional SLR stations in locations planned for the future
- Assumption of a realistic future scenario concerning performance (amount of data produced) and noise
- The studies have proven that increased station performances (to a minimum of 20 % of all passes) as well as an improved network geometry have to go hand in hand to achieve the future accuracy goals!

Recent SLR-related publications of DGFI-TUM

- Bloßfeld M. Rudenko S., Kehm A., Müller H., Angermann D., Seitz M.: Consistent estimation of geodetic parameters from SLR satellite constellation measurements. JoG, in review (minor revision)
- Bloßfeld M., Angermann D., Seitz M.: DGFI-TUM analysis and scale investigations of the latest terrestrial reference frame realizations. IAG Proceedings, in review (major revision)
- Kehm A., Bloßfeld M., Pavlis E. C., Seitz F.: Future global SLR network evolution and its impact on the terrestrial reference frame. JoG (2017), DOI: 10.1007/s00190-017-1083-1
- Kwak Y., Bloßfeld M., Schmid R., Angermann d., Gerstl M., Seitz M.: Consistent realization of celestial and terrestrial reference frames. JoG (2018), DOI: 10.1007/s00190-018-1130-6
- Männel B. Thaller D., Rothacher M., Böhm J., Müller J., Glaser S., Dach R., Biancale R., Bloßfeld M., Kehm A., Herrera Pinzon I., Hofmann F., Andritsch F., Coulot D., Pollet A.: Recent Activities of the GGOS Standing Committee on Performance Simulations and Architectural Trade-Offs (PLATO). IAG Proceedings (2018), DOI: 10.1007/1345_2018_30
- Panzetta F., Bloßfeld M., Erdogan E., Rudenko S., Schmidt M., Müller H.: Towards thermospheric density estimation from SLR observations of LEO satellites - A case study with ANDE-Pollux satellite. JoG, in review (minor revision)
- Pearlman M., Arnold D., Barlier F., Biancale R., Vasiliev V., Ciufolini I., Paolozzi A., Pavlis E., Sosnica K., Bloßfeld M.: Laser geodetic satellites: a high accuracy scientific tool. JoG (nearly submitted)
- Rudenko S., Bloßfeld M., Müller H., Dettmering D., Angermann D., Seitz M.: Evaluation of DTRF2014, ITRF2014 and JTRF2014 by Precise Orbit Determination of SLR Satellites. IEEE Transactions on Geoscience and Remote Sensing (2018), DOI: 10.1109/TGRS.2018.2793358
- Xiong C., Lühr H., Schmidt M., Bloßfeld M., Rudenko S.: An empirical model (CH-Therm-2018) of the thermospheric mass density derived from CHAMP. Annales Geophysicae - Special Issue: Dynamics and interaction of processes in the Earth and its space environment: the perspective from low Earth orbiting satellites and beyond (submitted)

Future plans

- Further debugging of DOGS-OC 5.1
- Reset of ILRS/IVS server at DGFI-TUM
 - Re-writing of Horsts routines necessary and already ongoing... to be finished end of May
 - > a lot of technical changes have to be made in the programs (i.e. IN/OUT, etc.)
- other tasks of Horst (QCB, bias reports, ...): decision still pending if DGFI can further provide input
- inclusion of DORIS-tracked satellites into an SLR/DORIS-constellation solution

Status and future plans of the ILRS Analysis Center at DGFI-TUM

Mathis Bloßfeld

Deutsches Geodätisches Forschungsinstitut (DGFI-TUM) Technische Universität München

ILRS ASC meeting, TU Vienna Vienna, 2018-04-12

ESA/ESOC Status

T. Springer, E. Schoenmann, W. Enderle

ESA/ESOC Navigation Support Office

ESA UNCLASSIFIED - For Official Use

Content

- Issues in BIAS PP
- Status regarding future ILRS plans
- Other ILRS/SLR related activities and plans
 - LARGE working group!?

ESA UNCLASSIFIED - For Official Use

ESA | 12/04/2018 | Slide 2

BIAS PP ISSUE (plots courtesy of Cinzia and Paolo)

L1 - Rescaled Sigma - RB<=1cm 0.02 ILRSA as hko dqf 0.015 afz ice nsa esa 0.01 0.005 meters -0.005 -0.01 -0.015 -0.02 7080 7090 7105 7110 7119 7124 7130 7358 7405 7406 7501 7810 7810 7810 7839 7840 7841 7845 7941 Stations

ESA UNCLASSIFIED - Foi

ESA | 12/04/2018 | Slide 3

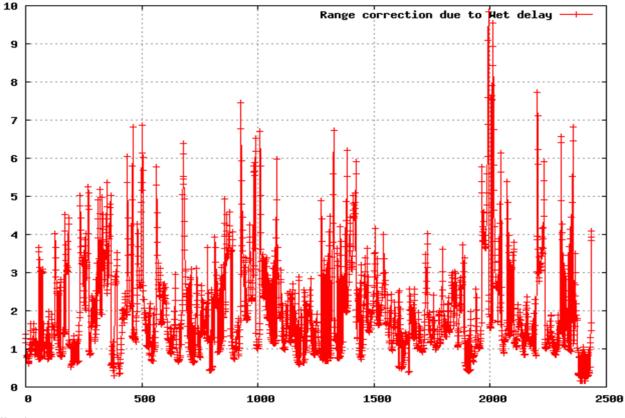
BIAS PP ISSUE (plots courtesy of Cinzia and Paolo)

L2 - Rescaled Sigma - RB<=1cm 0.02 ILRSA as 0.015 qfz nsq esa 0.01 0.005 meters -0.005 -0.01 -0.015 -0.02 7080 7090 7105 7110 7119 7124 7130 7358 7403 7405 7406 7501 7810 7810 7810 7839 7840 7845 7941 Stations

ESA UNCLASSIFIED - Foi

ESA | 12/04/2018 | Slide 4

BIAS PP Issue

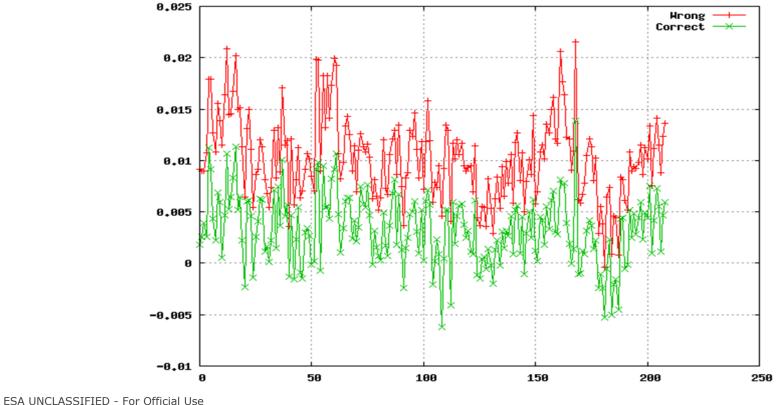

- A clear bias was observed in the ESA solutions for all stations
 - In particular also for good stations which should have hardly have a bias
- At ESA many tests were done to investigate the issue
 - Only test which showed a similar performance was switching the troposphere from the new Mendez-Pavlis model to the old Marini-Murray model, indicating that something in the troposphere model was most likely causing the issue.
 - In the end the effect was found "deep down" in the software being caused by an option which should only be used for Altimetry processing but was incorrectly also active for GNSS and ILRS under certain circumstances.
 - Was causing the "wet" troposphere effect to be set to zero.

ESA UNCLASSIFIED - For Official Use

ESA | 12/04/2018 | Slide 5

Range correction due to Wet delay

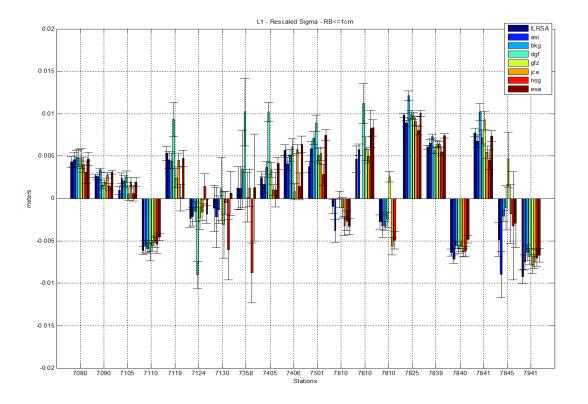
ESA UNCLASSIFIED - For Official Use


ESA | 12/04/2018 | Slide 6

•

Effect on Range Bias estimation (station 7090)

Effect on range bias estimation

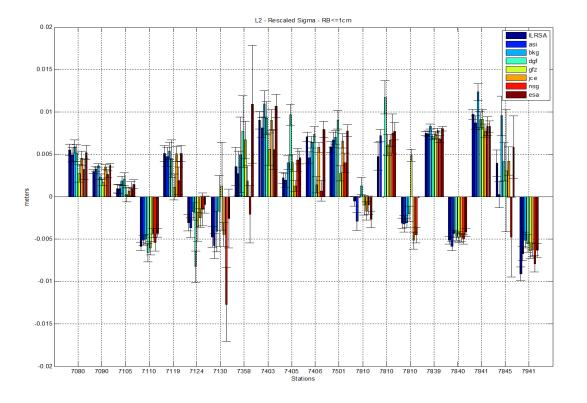


ESA | 12/04/2018 | Slide 7

+

The set of th

ISSUE Resolved (plots courtesy of Cinzia and Paolo) Cesa



ESA UNCLASSIFIED - For Official Use

ESA | 12/04/2018 | Slide 8

+

ISSUE Resolved (plots courtesy of Cinzia and Paolo) Cesa

ESA UNCLASSIFIED - For Official Use

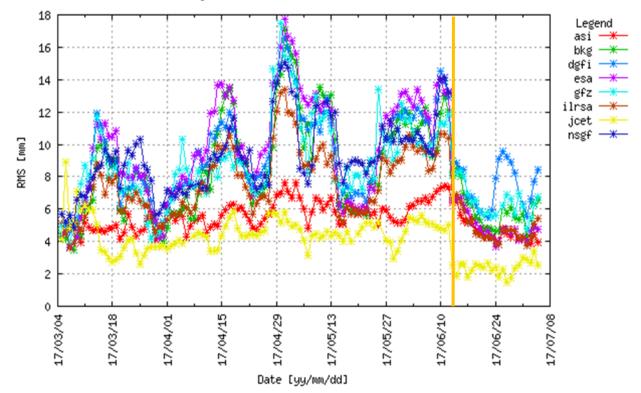
ESA | 12/04/2018 | Slide 9

+

Status of ESA/ESOC ILRS AC

ESA UNCLASSIFIED - For Official Use

ESA/ESOC AC Status

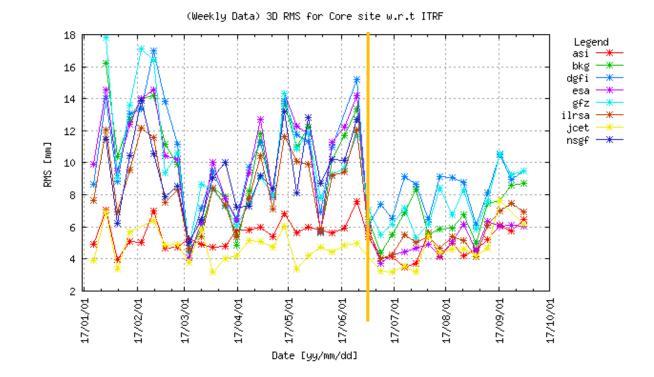


- Reprocessing for ITRF2104 was used to improve our processing scheme
 - Discovered that estimation constant cross track force was sub-optimal
 - Most significant change was station data weighting
 - We now use 4 groups: CORE, Good, OK, and rest
- Switch to using our processing strategy developed for the ILRS reprocessing
 - At same time as the switch to ITRF2014
- All our solution were affected in scale by the tropo bias
 - Must be a visible "jump" in our scale since our recent bug fix

Improvement in 3D RMS for ESA after switch

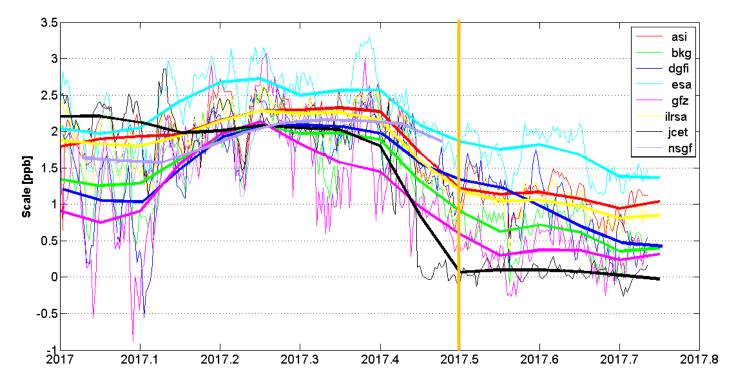
(Daily Data) 3D RMS for Core site w.r.t ITRF

ESA UNCLASSIFIED - For Official Use


ESA | 12/04/2018 | Slide 12

×

Improvement in 3D RMS for ESA after switch


ESA UNCLASSIFIED - For Official Use

ESA | 12/04/2018 | Slide 13

*

ESA Scale issue. Should have improved now! But still on the high side.

ESA UNCLASSIFIED - For Official Use

ESA | 12/04/2018 | Slide 14

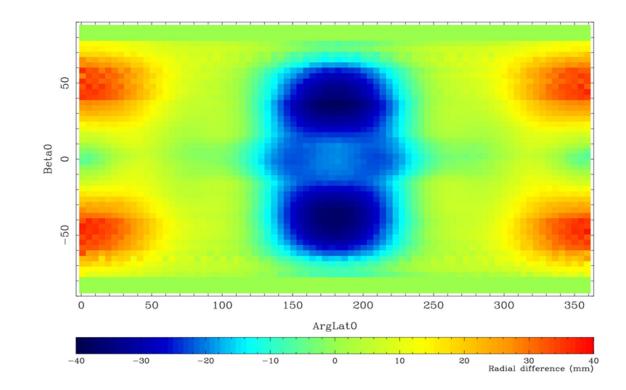
4

Open Issues

- Bias per station per wavelength
 - Only works for one wavelength
 - Some work needed to handle stations with multiple wavelengths
- SINEX with gravity field coefficients
 - Not 100% sure that the partials are correct
 - Otherwise fully ready for LARES (SRP coefficient?)
- Time biases to be tested/reviewed
 - 1-way versus 2-way issue in our software
 - Simple enough so no issue expected
- Detailed tests of sub-daily ERP planned
 - So far did not notice much in the ILRS solutions
 - Gipson model tested, Sibois model to be tested
- Several different mean pole motions available in the software, no issue there.

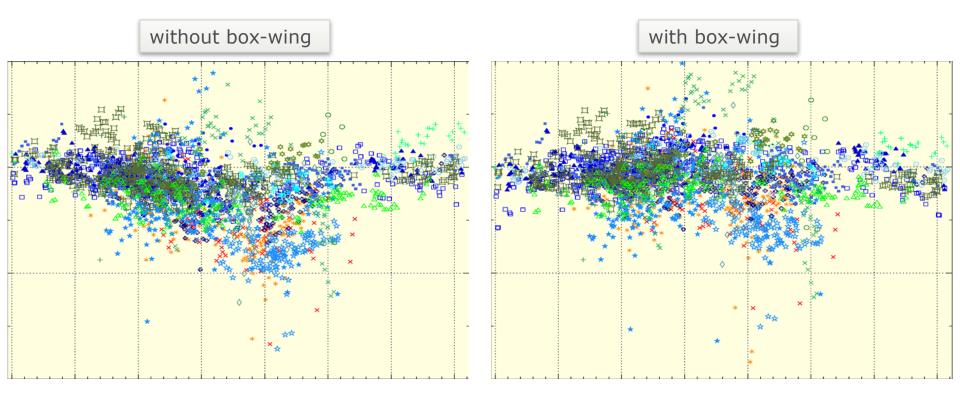
ESA | 12/04/2018 | Slide 15

Other ILRS/SLR Activities at ESA/ESOC


ESA UNCLASSIFIED - For Official Use

GPS Radial Orbit Differences

GPS-IIA no-model vs box-wing model

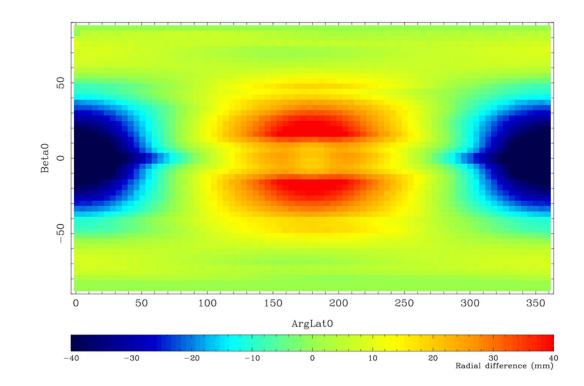

ESA | 12/04/2018 | Slide 17

ESA UNCLASSIFIED - For Official Use

GPS SLR Orbit Validation

SLR residuals (2-way) GPS-IIA

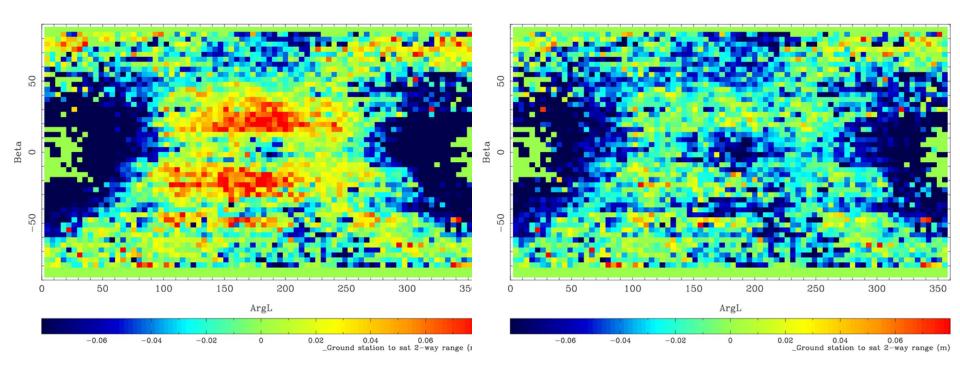
ESA UNCLASSIFIED - For Official Use


ESA | 12/04/2018 | Slide 18

•

GLONASS Radial Orbit Differences

GLONASS no-model vs box-wing model


ESA | 12/04/2018 | Slide 19

ESA UNCLASSIFIED - For Official Use

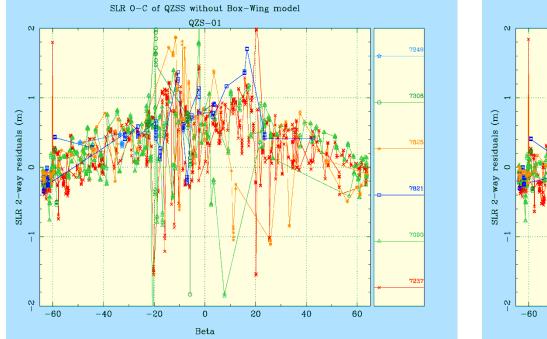
GLONASS SLR Orbit Validation

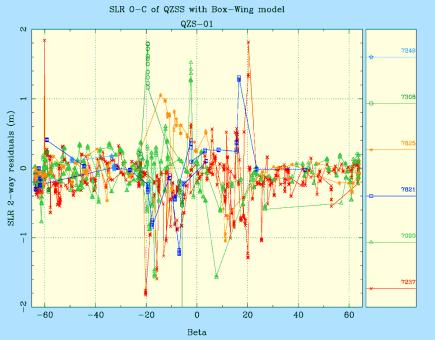
no-model vs box-wing model

= ## .

ESA | 12/04/2018 | Slide 20

1+1


+

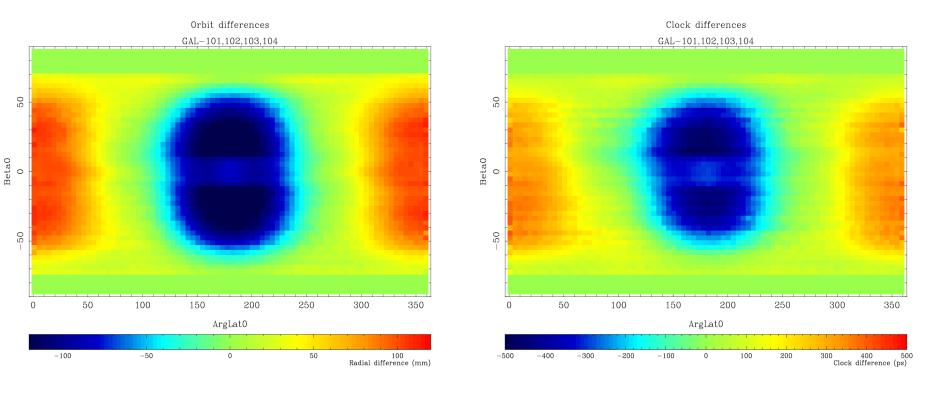

European Space Agency

ESA UNCLASSIFIED - For Official Use

QZSS SLR Orbit Validation

+

ESA UNCLASSIFIED - For Official Use

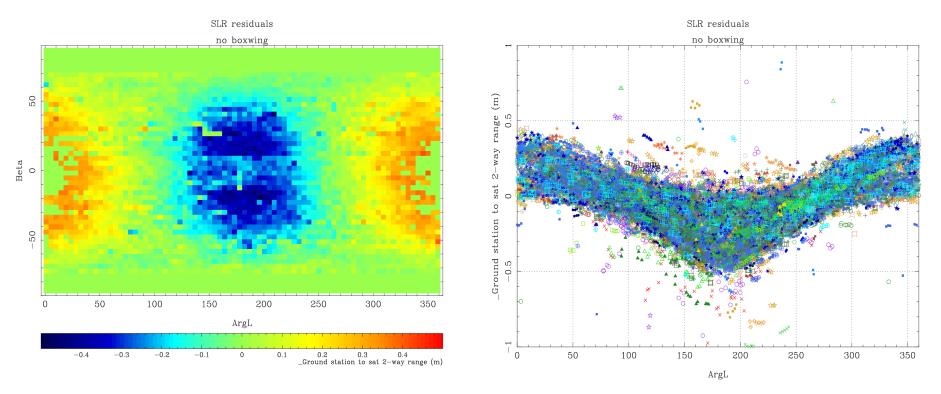

ESA | 12/04/2018 | Slide 21

₩ + 1

GALILEO Radial Orbit Differences

GALILEO no-model vs box-wing model

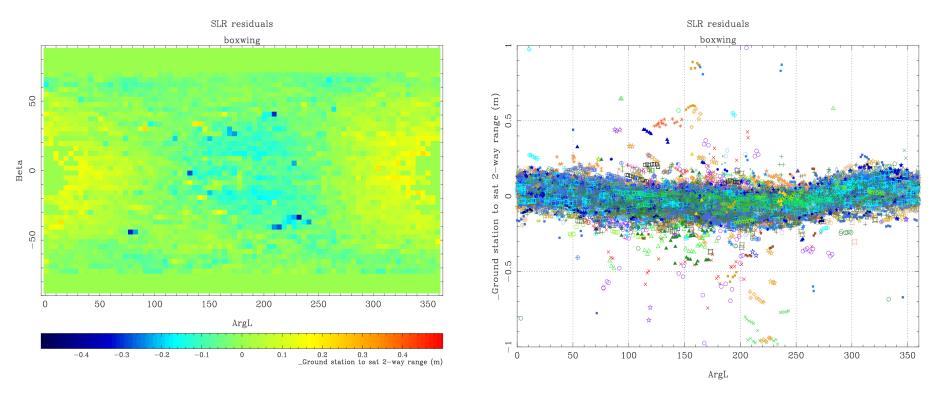
+


*

ESA | 12/04/2018 | Slide 22

ESA UNCLASSIFIED - For Official Use

GALILEO SLR Residuals without Box-Wing model


ESA | 12/04/2018 | Slide 23

+

ESA UNCLASSIFIED - For Official Use

GALILEO SLR Residuals with Box-Wing model

ESA | 12/04/2018 | Slide 24

+

ESA UNCLASSIFIED - For Official Use

Example analysis Comparison of Orbit Residuals and Clock Bias

SLR 1-Way Residuals w.r.t. ESOC MGNSS Finals SLR 1-Way Residuals w.r.t. ESOC MGNSS Finals and Satellite Clock, 31.10.2017, GAL-103 and Satellite Clock, 07.12.2017, GAL-103 -8080 -8080 -60 60 60 -60Satellite Clock Bias (detrended) [mm] 1-Way Residual (debiased) [mm] with Mean RMS of Raw Observations Satellite Clock Bias (detrended) [mm] 1-Way Residual (debiased) [mm] with Mean RMS of Raw Observations -40 -40-20 -20 20 20 40 -40 40 7839 60 60 -60 -60 SV Clock 7825 SV Clock 7839 80 -80 80 -80 12 18 24 12 18 24 0 6 0 6 Daytime [h] Daytime [h]

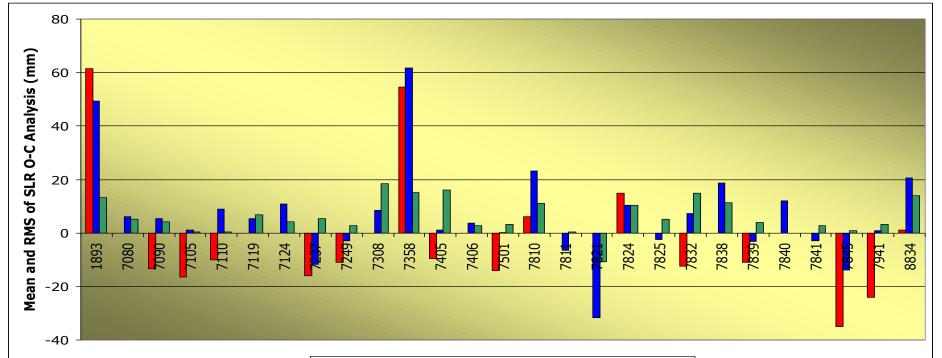
SLR residuals confirm orbit effects on clock estimate.

Significant differences in NP accuracy/systematics between stations.

ESA UNCLASSIFIED - For Official Use

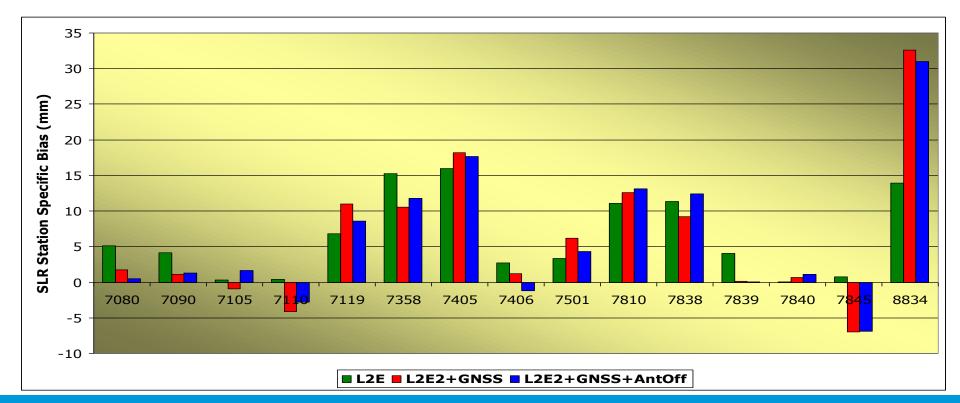
ESA | 12/04/2018 | Slide 25

•



Combined ILRS + IGS Analysis + SLR observations of the GNSS targets

ESA UNCLASSIFIED - For Official Use


SLR Station Specific Mean of Residuals GNSS OMC and SLR(L2E2) (from 2009) (2-way)

GNSS-OMC 🗖 L2E2-CRDFIX 🗖 L2E2-CRDFREE

Good agreement for large biases (coordinate issues?)! SLR(L2E2) biases mostly positive, GNSS OMC biases negative

SLR Station Specific Range Biases (2-way) GNSS + SLR(GNSS) + SLR(L2E2) (from 2009)

Combination of GNSS and SLR works.

Biases in good agreement. Some significant GNSS influence visible

Discussion / Outlook

- Combination on the obervation Level (CooL) of SLR and GNSS is very strong!
 - Issue with 8834 (Wetzel) showed up very clear in the 2009 combined analysis
 - When it was later (2010 or even 2013?) detected this made us realize how strong this combo is!
- But in 2010 we gave up on this CooL combo because
 - No more GPS with SLR reflectors
 - SLR tracking of GLONASS more noisy
 - GLONASS orbits worse then GPS
- Now (2018) SLR+GNSS CooL becomes interesting again
 - Much more and better tracking of GNSS targets
 - Galileo orbits quality equal to that of GPS, and in some aspects even better
 - All Galileo satellites have SLR reflectors
 - GLONASS orbits meanwhile also significantly better then in 2010
- What kind of tracking of the GNSS makes most sense for CooL
 - Make LARGE GREAT again!?

ESA UNCLASSIFIED - For Official Use

ESA | 12/04/2018 | Slide 29

4

GFZ AC Report

Rolf Koenig

Status Report

- Timely availability of daily pos+eop in 2017: 97.5 % (2016: 95.4 %)
- Timely availability of weekly pos+eop in 2017: 96.0 % (2016: 100 %)
- Weekly pos+eop v70 is running since June 2017
 - Gravity field GGM05S plus time variable parts: C(2,0), C(2,1),
 S(2,1) per arc as provided by ECP and secular C(3,0) to C(6,0)
 - SLRF2014 including Post Seismic Deformations (PSD)
- Daily pos+eop v170 is running since June 2017
 - As v70
- PP systematic biases
 - Solutions v220 from 1993 to 2017 covering 1305 SINEX files delivered

ILRS ASC Meeting Vienna, April 12, 2018

Status Report

- Status for re-analysis:
 - Secular pole: no problem
 - T2L2 time biases
 - expected to come with data handling file: some days for adopting and testing needed
 - CoM offsets
 - Expected to come with NSGF file. No problem
 - Inclusion of LARES
 - Not yet decided wether on observation level or on normal equation level
 - High frequency EOP
 - No tests done so far. Needs some programming and testing: few weeks time needed
- Other plans:
 - DTRF2014, JTRF2014 tests not started yet

ILRS ASC Meeting Vienna, April 12, 2018

Lunar Laser Ranging Analysis at the Institute of Applied Astronomy RAS

Dmitry Pavlov Laboratory of Ephemeris Astronomy, IAA RAS dpavlov@iaaras.ru

ILRS Analysis Standing Committee Meeting TU Wien, Vienna, 12 April 2018

LLR Analysis at IAA RAS: Past and Present

Milestones

- > 1987: IAA RAS founded in Leningrad, USSR (now St. Petersburg, Russia)
- 1998: IAA RAS united with the Institute of Theoretical Astronomy (ITA RAS). Ephemerides of Planets and the Moon (EPM) development continues at IAA
- > 2013: release of EPM2011 with lunar physical libration
- > 2016: release of EPM2015 with JPL DE430 lunar model (Folkner et al, 2014)
- > 2017: release of EPM2017 (most recent version)

Present Activities

- > Building high-precision numerical ephemeris of planets and the Moon
- > Improving the model of orbital and rotational motion of the Moon
- Improving models used in reductions of LLR observations
- > Determining the accuracy of the lunar ephemeris
- > Building lunar reference frame for navigation and selenodesy by 2020
- Developing ephemeris support and normal point computation for the Russian LLR Station (AOLC, near Zmeinogorsk, Altai Krai) expected to start by 2020

Observations

McDonald	1969-1985	3604 NPs (MINI). Source: POLAC (polac.obspm.fr/llrdatae.html)
Crimea	1982-1984	177 historical NPs (Mulholland's format). Source: CrAO (recently found). Available at iaaras.ru/en/dept/ephemeris/observations/
MLRS1	1983-1988	587 NPs (MINI). Source: POLAC
MLRS2	1988-2015	3670 NPs (MINI). Source: POLAC. No data found after 2015 (discontinued?)
Haleakala	1984-1990	770 NPs (MINI). Source: POLAC. Discontinued.
OCA	1984-2005	Ruby laser: 1188 NPs, YAG laser: 8324 NPs (MINI). Source: POLAC.
OCA	2009-2017	MeO laser: 1836 NPs (MINI). Source: ASTROGÉO (geoazur.fr/astrogeo/?href=observations/donnees/luneRG/brutes)
OCA	2015-2017	IR laser: 2840 NPs (MINI). Source: ASTROGÉO. Very high quality.
APO	2006-2016	2648 NPs (MINI). Source: Tom Murphy's webpage (tmurphy.physics.ucsd.edu/apollo/norm_pts.html). Expecting 2017 data soon.
Matera	2003-2015	118 NPs (MINI). Source: POLAC. No data found for 2016.

Model of the Orbital Motion of the Moon

- E-I-H relativistic equations for point masses (Sun, Moon, planets, 5 asteroids)
- Acceleration from solar oblateness
- Earth gravity field: EGM2008 up to degree 6 with conventional IERS corrections (Moon, Sun, Venus, Mars, Jupiter)
- Moon gravity field: GRAIL solution GL660b up to degree 6 (Earth, Sun, Venus, Mars, Jupiter)
- > Acceleration from Earth solid and ocean tides
 - IERS2010 model
 - DE430 model (Williams, Boggs, 2016): simpler, but with two determined parameters
- > Acceleration from solar pressure (Vokrouhlický, 1997)
- > Should try figure-figure acceleration (Hofmann et al, 2018)

Model of the Lunar Physical Libration

- Torque from point masses in lunar gravitational field: Earth, Sun, Venus, Mercury, Mars, Jupiter
- Figure-figure torque between Earth's J2 and Moon (should try higher harmonics?)
- > Dynamic tensor of inertia: delayed dissipation from rotation and Earth tides
- > C20, C22, C21, S21, S22 respond accordingly
- > Inertia and torque from inner rotating liquid core (Williams et al, 2001)
- > Torque from friction on the core-mantle boundary (ibid)

Compromises made for now

- Mean C21, S21, S22 are fixed to zero (model is built on principal axes) despite GRAIL's nonzero values (S21 is strongly nonzero even from LLR itself)
- \succ C32, C33, S32 are fit to observations despite GRAIL's values.
- Additional kinematic longitude libration terms (few mas) Work in progress on nonzero S21.

Reductions of Observations

- > Relativistic delay (Kopeikin, 1990) from Sun, Earth, Moon, Saturn, Jupiter
- Tropospheric delay (Mendes, Pavlis, 2004). Tried Leonid Petrov's numerical model based on global weather model, no positive change for now.
- ➤ UTC ➤ TDB transformation with numerically integrated TT-TDB
- ➤ ITRF ➤ ICRF transformation
 - IAU2000/2006 model
 - IERS C04 EOP series (JPL KEOF used for old McDonald observations)
 - IERS-recommended libration and ocean variations
- Tidal displacement due to solid Earth (Matthews et al, 1997), ocean (FES2012) and pole tides
- Relativistic transformation of coordinates to BCRS
- ➤ Solid Moon tides from Earth and Sun (H2, L2)
- > Determined biases (4 for APO, 7 for OCA, 7 for Haleakala, 5 for McDonald)

Statistics of Residuals

Station	Timespan	NPs	Used	Rejected	One-way wrms, cm
McDonald	1970-1985	3604	3553	51	20.0
Crimea	1982-1984	177	177	0	58.9
MLRS1	1983-1988	631	588	43	11.2
MLRS2	1988-2015	3670	3216	454	3.4
Haleakala	1984-1990	770	747	23	5.5
OCA (Ruby)	1984-1986	1188	1109	79	17.1
OCA (YAG)	1987-2005	8324	8207	117	2.0
OCA (MeO)	2009-2017	1836	1814	22	1.41
OCA (IR)	2015-2017	2840	2797	43	1.25
APO	2006-2016	2648	2610	38	1.36
Matera	2003-2017	151	143	8	3.0

Present Results

- ➤ Lunar ephemeris (meter ➤ decimeter accuracy for years in the future)
- Location of LLR stations (few millimeters accuracy for OCA and APO) and drift for OCA and McDonald/MLRS1/MLRS2 (accuracy about 1 mm/yr)
- Lunar reference frame based on five retroreflector points (meter -> decimeter)
- > Determination of parameters of the lunar inner structure
- > Determination of celestial pole (wrt ecliptic) with $3\sigma \approx 0.2$ mas. ICRF X rotation trend is detected: -0.037 ± 0.013 mas/yr. Secular aberration?
- > Proof-of-concept determination of daily nightly UT0 ($\sigma \approx 0.2$ ms), VOL ($\sigma \approx 5$ mas), two out of three lunar orientation angles ($\sigma \approx 4$ mas)
- With NPs accuracy in millimeters, the main suspects of O-C nightly scatter are: tropospheric delay model, temperature deformations, sub-diurnal EOP
- > Crimea observations were valid (including three Lunokhod 1 ranges in 1974)

Some references

Pavlov et al. 2016 Pavlov, Yagudina, 2017 (in Russian) Tryapitsyn et al: historical abstract on CrAO LLR submitted to ILRS Workshop 2018

ILRS AC Hot Topics and Future Work

ILRS AC hot topics

- > **Time transfer by laser link** seemingly not possible with LLR?
- ITRF2014 reanalysis, secular polar motion: hardly possible because stations' locations and their drift (for OCA and McDonald) are determined from LLR itself. Other stations' drift is taken from GNSS solutions.
- High frequency EOP models certainly can be checked with LLR. IAA RAS is ready to join the IERS pilot project and test various models proposed. Benefit of LLR in testing HF EOP: large timespan, very stable orbit.

Other future work

- Improve ties between LLR frame, lunar gravitational field frame (GRAIL), and lunar topology (LRO)
- ➤ Gradually improve lunar model; determine the cause of nonzero S21
- > Deal with tropospheric delay? Ask stations to combine LLR with SLR/GNSS?
- ➤ General relativity tests

Our Web Applications

Ephemeris calculation

Starting date: 2018 04 09 TT • UTC TDB Autodetect					
Step size (days): 1 Number of steps: 10					
Show Moon Titself					
relative to Observer					
Observer: Geocenter					
Planetary theory: EPM2017 (1787–2214) -					
Equator and equinox: Mean J2000 • Coordinates: Equatorial •					
Calculate distance					
Glight-time correction					
Output: α (HH MM SS.sss), δ (° ´ :sss)					
Day fraction digits 1					
α fraction digits 6					
δ fraction digits 6					
Show results below Show results in a new window					
Time scale : UTC Object : Moon Relative to : Observer Planetary theory : EM2017 (http://iaaras.ru/en/dept/ephemeris/epm/2017) Cordinates : Equatorial EGP : Not applied Observer : Geocentric Light time correction : yes : Not applied PVY MN Du.d H+ MM SS.sssss DD MM SS.sssss 2018 4 10.0 20 42 16.6435 c-175 18 20.26139 2018 4535 c-175 18 22.26238 2018 4 11.0 21 31 34.612386 -15 25 56.215625 2018 411.0 25 58 01.3574 - 4 09 2.87.05745 2018 4 11.0 2 35 80 07.552248 - 8 25 50.017755 2018 41.0 25 58 01.3574 - 4 09 2.87.0504 2018 4 11.0 - 0 25 58 01.3574 - 4 09 2.97.85749 29 456.45146 2018 4 11.0 - 0 23 19.05630 - 22 45 2.97.21668 2018 45.4516 2018 4 11.0 - 0 35 90.37724 9 35 29 25.2761668 2018 418.0 3 26 02.853119 13 39 22.609095					

LLR pointing

UTC date:2018 04 09	dd MM DD HH MM SS.sss
Increment (seconds): 10 Time span (da	ys): 1
Station:	
Apache	
Reflector: A11	
Laser wave length (nm)	532.0
Temperature (°C)	7.2
Adjust for refraction Pressure (mbar)	1000.0
Humidity (%)	53.0
Lowest allowed elevation (°): 10	
Highest allowed elevation (°):80	
Channes who is a set	
Show results in a n	ew window
Obschlig Ling Uisible A., Elev. I. Visible H.A., Elev. I. Pintt V014000 HMESSI Indlams and Impact International Internatinte International International International Internation	214 0.175235 2.6718636667 214 0.175235 2.6718636677 215 0.177231 2.6718614902 253 0.1772674 2.671766474 253 0.1772674 2.671766474 253 0.1772697 2.671766474 255 0.1772697 2.671766474 256 0.1772697 2.671766474 258 0.1797697 2.671764474 258 0.1797697 2.671694648 259 0.1797697 2.671694748 250 0.1810167 2.6716947488 270 0.1810167 2.671694988 270 0.1810167 2.6715949988 270 0.1810167 2.6715949988 270 0.1810167 2.6715929988 271 0.1810167 2.6715929988 272 0.181543 2.67159294968 273 0.1815443 2.67159294968 274 0.1815443 2.671452749159 275 0.185543 2.671452749159
20180409.100150 5.2709574 0.1949160 5.2018285 -0.3396208 5.2705 20180409.100200 5.2714028 0.1954181 5.2025372 -0.3396203 5.2713	537 0.1949121 2.67103878677 991 0.1954142 2.67101655168
20180409 100210 5 2718484 0 1959201 5 2032460 -0 3396199 5 2718	447 0 1959162 2 67099432438

LLR O-C calculation

iaaras.ru/en/dept/ephemeris/online

iaaras.ru/en/dept/ephemeris/llr-pointing

iaaras.ru/en/dept/ephemeris/llr-oc

Happy Cosmonautics Day!

IERS Directing Board, 9 April 2018

- ISO standard on ITRS are written in a complete document submitted to ISO WG for comment and approval. Available on request
- IERS Technical note on ITRF2014 completed and distributed.
- IERS Technical note on the comparisons of ITRF2014, DTRF2014 and JTRF2014 under preparation
- Still discussion on the scale discrepancy between VLBI and SLR apparently seen only in ITRF2014. Further analyses made at JPL confirm the existence of the discrepancy
- Next ITRF roadmap
 - Based on the results coming from the questionnaire prepared by IGN, the next ITRF will be ITRF2020
 - Call for participation by the end of 2018
 - Specific solution for testing purposes may be requested to the Technique Services, e.g. solution with SLR range biases estimated

IERS Directing Board, 9 April 2018

- IERS conventions
 - Chapter 6 and 7 updated on February to be consistent with the new conventional "mean pole"
 - Major revision foreseen in 2021-2022. Call for participation to experts helping in the next revision.
 - Discussion on convention versioning for IERS2010
- EOP products
 - Importance of IVS UT1 intensive session. High residuals in the LAGEOS orbits disappeared using the EOPC04 14 that contains the intensive UT1. Starting from January EOPC04 includes the intensive from IAA and BKG (more ACs will be considered). Very soon the full EOPC04 14 series will have the updated UT1.
 - The rule to have final values after 30 days is too strict and not allow to correct past errors in the EOPC04 series. Proposal to change this rule in order to have updated series whenever necessary with proper management of the versioning

ILRS Prediction and Data Formats Update

R. Ricklefs University of Texas / CSR For the ILRS Format Change Study Group ILRS Data Formats and Procedures SC ILRS CB

Need for Changes

- New missions with new requirements
- Expanded configuration information
- Correct oversights in original formats
- Accommodate debris and other non-SLR/LLR tracking to avoid multiple format branches
- Update manuals

Fortunately, these formats were designed to be flexible and expandable

Consolidated Prediction Format (CPF)

- ELT mission:
 - Transponder Clock Reference Time added (in H4 record)
 - Two-digit ephemeris Sequence number rather than one-digit (in filename and H1 record) for more than 10 updates/day
- Break Target Type (H2) into 2 fields, target class and target location
- Make headers (H1-Hn) free format like the rest of the record types.
- Manual was rewritten to free it from TIV heritage

Consolidated Range Data Format (CRD) 1

- Header records ("H") now free format like the other record types
- Target type was split into 2 fields (same as CPF) ("H3" record)
- Added a prediction header ("H5") to track down prediction issues (includes format, source, date, and sequence number)
- Added more configuration information
 - C5: Software New
 - C6: Meteorological Instrumentation New
 - C0: Updated to allow C5 and C6

Consolidated Range Data Format (CRD) 2

- Added transmit amplitude (already had receive amplitude) ("10" record)
- Return rate (SLR) and signal:noise (LLR) split into 2 separate fields ("11" record)
- Added sky temperature and renamed precipitation type to weather conditions, allowing use of met sensor SYSOP/WMO codes ("21" record)
- Manual includes an appendix with acceptable values for all fields

CRD – Changes mainly to support non-SLR/LLR tracking

- Add network name to "H2" record and to non-SLR/LLR data filename
- On the filename, the network name will prevent debris data from being mistaken for SLR/LLR data at the OCs and DCs (these files should not be submitted to the OCs, but in case a few get through...)
- Make station and target wording in the manual more general ("H2" and "H3" records)
- Add az, el, and range rates ("12" and "30" records)

Changes discussed but not included

- Seconds of day leaving maximum value at 86400: problem dictating SOD > 86400 no longer exists
- Lunar data: Detailed APOLLO processing info to remain in comment lines ("00")

Implementation Notes 1

- OCs, DCs, and ACs will need to be able to accept data in format versions 1 and 2 permanently.
- V1 and v2 data can be mixed in the same file.
- Revised CRD and CPF sample code will be made available on the ILRS web site in the next month.
- A set of CRD v1 files will be converted to v2 and either mailed or put onto the ILRS web site for analysts' testing of their software. The pad id will be somewhere between 9990 and 9999, depending on the original pad ID.
 - How many test passes and sites do you all need to ensure your software is working?

2 sites, passes for one day, all targets

Implementation Notes 2

- The ASC will be vetting stations' conversion to v2
 - Parallel v1 and v2 versions of the CRD files will come from the stations.
 - How many passes from what satellites are needed to vet a station's conversion?

To be on the safe side, we would ask for ONE WEEK of passes from ALL possible targets.

CRD Implementation Working Schedule 1

- April 2018: Post Manuals on ILRS web site
- April 2018: Complete and distribute sample code (beta version)
- May 1, 2018: Last date for accepting additional suggested changes
- May 15, 2018: Test v2 CRD files available via private correspondence
- July 1, 2018: Test v2 CRD files available on ILRS web site
- July 2018: OCs, DCs able to handle CPFs

CRD Implementation Working Schedule 2

- Sept 1, 2018: some analysts able to process v2 CRD files
- Oct 1, 2018: One or two stations able to produce v2 CRDs. ASC vetting of station implementation begins.
- Jan 1, 2019: All analysts are able to handle and process v2 CRDs.
- June 1, 2020: almost all stations able to produce v2 CRDs

Schedule will change as needed

The JCET AC/CC Report to the ILRS ASC

E. C. Pavlis and M. Kuzmicz-Cieslak

Vienna, Austria, April 12, 2018

Operational Products Status

Station Systematic Error Monitoring Project

 LAGEOS/LARES Data distribution in elevation and pass duration

Journal of Geodesy ILRS Special Issue Status Report

- Daily and Weekly series delivered routinely and consistently by six of the eight ACs
- We have not received contributions from GRGS for over a year
 - Latest news from Florent indicate that a restart is imminent (AGAIN)
- With the routinely contributing ACs down to six-seven, it is important that all ACs make an effort to deliver their contributions regularly, to maintain the quality of our products!
- ACs that do not participate in test PPs and demonstrate their ability to deliver quality products, delay us from wrapping up PPs and moving to the next phase or PP. We need to establish a process to move such cases to the ACC group and move on, until they can recover and come back.

uarantina Statiana

Currently Quarantined Sites

ų	Quarantine Stations								
	Station	Code	Site	DC	SOD	DOMES	First Data	Last Data	
	1888	SVEL	Svetloe, Russia	EDC	18889801	12350S002	2012-02-03	2018-04-09	2 day(s)
	7358	GMSL	Tanegashima, Japan	NASA	73588901	21749S001	2004-09-01	2018-04-04	7 day(s)
	7395	GEOL	Geochang, Republic of Korea	EDC	73956501	23910S001	0000-00-00	0000-00-00	None day(s)
	7503	HRTL	Hartebeesthoek, South Africa	EDC	75036401	30301S010	2017-03-24	2018-04-08	3 day(s)
	7816	UROL	Stuttgart, Germany	EDC	78165201	10916S001	0000-00-00	0000-00-00	None day(s)
	7824	SFEL	San Fernando, Spain	EDC	78244502	13402S007	1999-04-08	2017-07-01	284 day(s)
	8834	WETL	Wettzell, Germany (WLRS)	EDC	88341001	14201S018	1991-01-08	2018-04-10	1 day(s)

- Four sites (above in RED) are actively undergoing validation of their data;
- □ Two "engineering" sites (above in PURPLE) that have yet to submit any data (no need for official validation, but may request it if they want to see the quality of their data assessed);
- San Fernando is reaching "end of operations" phase, so no need to proceed.

- Six ACs (so far) have contributed series following the new "labeling" of the biases according to the used wavelength for the re-analysis period 1993 to present:
 - ASI, BKG, ESA, GFZ, JCET and NSGF

These results are now available online:

- http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/
- The combination results will be added online when available
- We need to receive ASAP the DGFI contribution so that the final combination can be formed;
- A commitment from all the ACs that they will support a weekly product, now that the PP is completed, so we can launch the operational phase;

- Six ACs (so far) have contributed series following the new "labeling" of the biases according to the used wavelength for the re-analysis period 1993 to present:
 - ASI, BKG, ESA, GFZ, JCET and NSGF

These results are now available online:

- http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/
- The combination results will be added online when available
- We need to receive ASAP the DGFI contribution so that the final combination can be formed;
- A commitment from all the ACs that they will support a weekly product, now that the PP is completed, so we can launch the operational phase;

AC-contributed series that we received so far:

Analysis Center	Status of Submission
ASI	Submitted
BKG	Submitted
DGFI	???
ESA	Submitted
GFZ	Submitted
JCET	Submitted
NSGF	Submitted

Site Selection for the SSEM Project

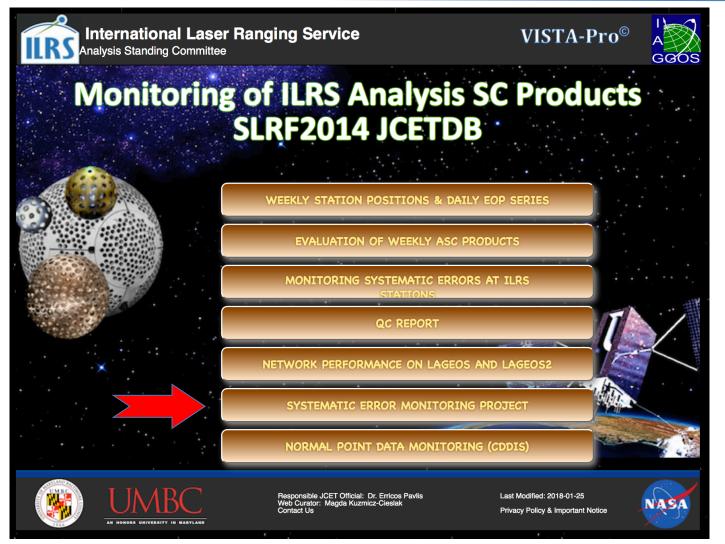
1824 Golosiiv <mark>1831 Lviv</mark> 1863 Maidanak 2 1864 Maidanak 1 2003.0-> 1868 Komsomolsk-na-Amure 2008.0 -> 1873 Simeiz 2001.0 -> 1879 Altav 1884 Riga <mark>1885 Riga</mark> 1886 Arkhyz 1887 Baikonur 1888 Svetloe 1889 Zelenchukskya 1890 Badary 1891 Irkutsk 1893 Katzively 1953 Santiago 7080 McDonald Obs. 7090 Yarragadee 7097 Easter I 7105 Greenbelt 7110 Monument Peak 7119 Haleakala 7122 Mazatlan

7124 Easter I 7124 Tahiti 7125 Greenbelt 7130 Greenbelt 7210 Haleakala 7231 Wuhan 7236 Wuhan 7237 Changchun 7249 Beijing 7295 Richmond 7308 Koganei 7328 Koganei 7335 Kashima 99/04-00/05 7337 Miura 7339 Tateyama 7355 Urumai 7356 Lhasa 7357 Beijing A 7358 Tanegashima 7359 Daedeok 7394 Sejong 7403 Arequipa 7404 Santiago 7405 Conc@423 7405 Conc@847


7406 San Juan \rightarrow 2013.0 7407 Brasilia <mark>7410 Algonqui</mark> 7411 La Grand 7501 Hartebeesthoek 7502 Sutherla 7525 Xrisokel 7530 Bar Givv 7545 Punta Sa <mark>7548 Cagliari</mark> 7597 Wettzell 7806 Metsahovi 99/09-> 7810 Zimm@423 7810 Zimm@532 7810 Zimm@846 7811 Borowiec 7819 Kunming 7820 Kunming 7821 Shanghai 7822 Tahiti 7823 San Fernando 7824 San Fernando 7825 Mt Stromlo 7830 Chania 7831 Helwan

7832 Riyadh 7835 Grasse 7836 Potsdam 7837 Shanghai 7838 Simosato 7839 Graz 7840 Herstmonceux 7841 Potsdam 7843 Orroral 7845 Grasse 7848 Ajaccio 7849 Mt Stromlo 7850 Mcdonald 7882 Cabo San 7883 Ensenada 7884 Albuquer 7918 Greenbelt 7939 Matera 7941 Matera <mark>8833 Kootwijk</mark> 8834 Wettzell

Erricos C. Pavlis 04/12/2018

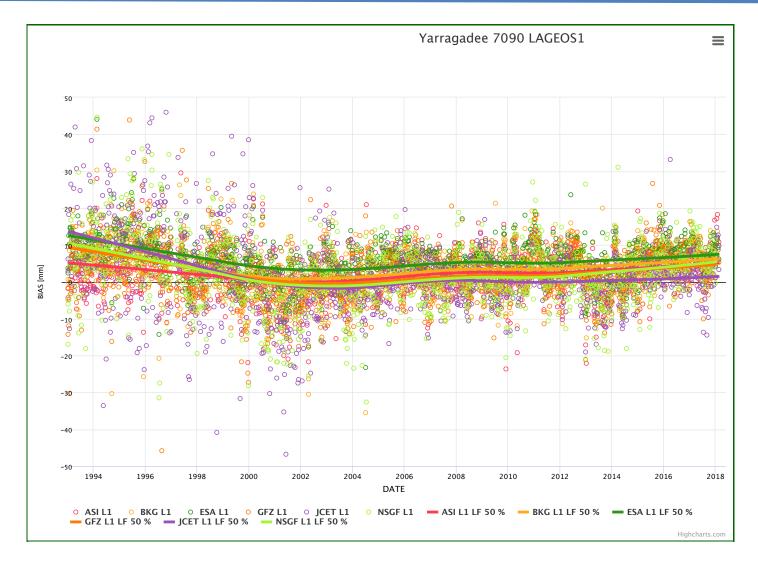


JCET Portal UPDATE

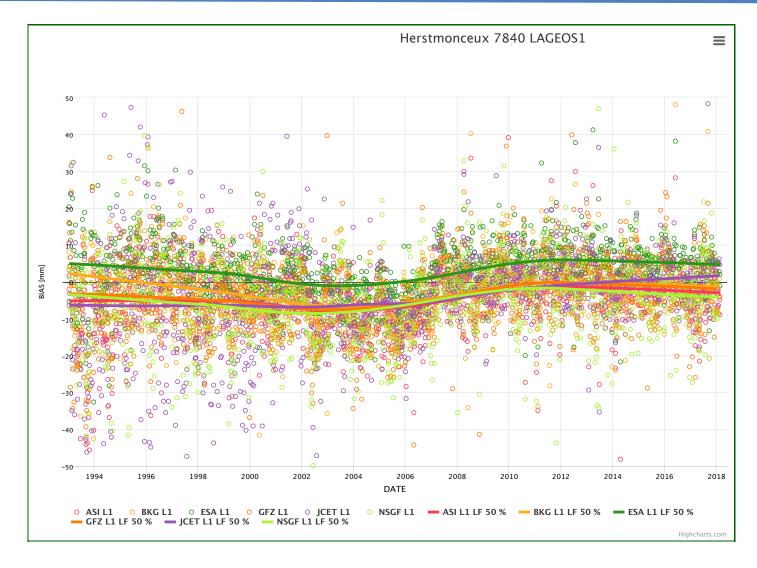
http://geodesy.jcet.umbc.edu/ILRS_AWG_MONITORING/

Erricos C. Pavlis 04/12/2018

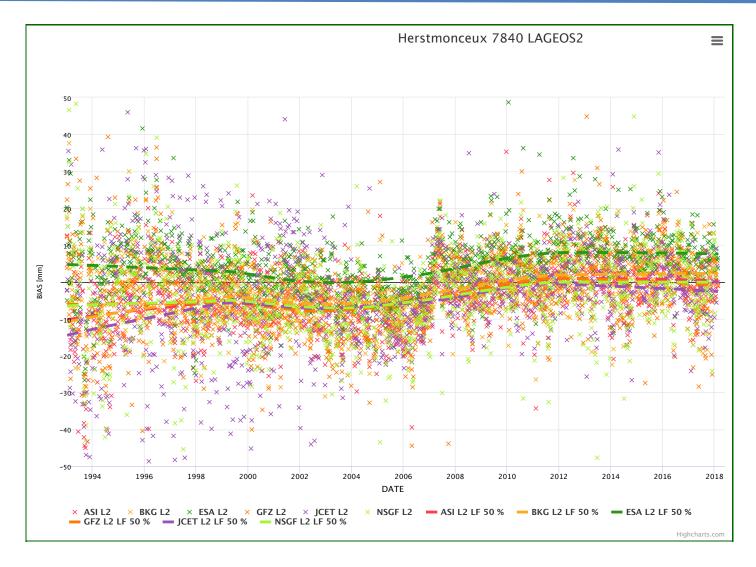
Station Systematic Error Monitoring

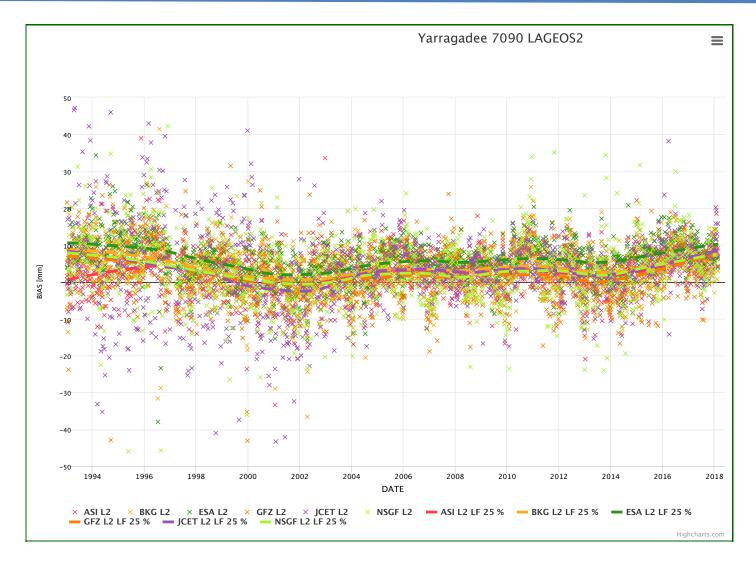


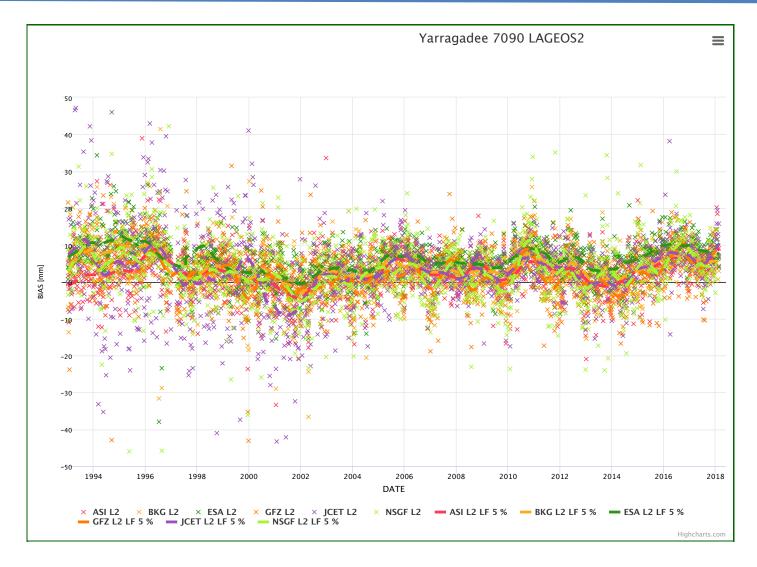
Station Systematic Errors Estimated from LAGEOS and LAGEOS-2 SLR DATA Reanalysis Project Results since 1993

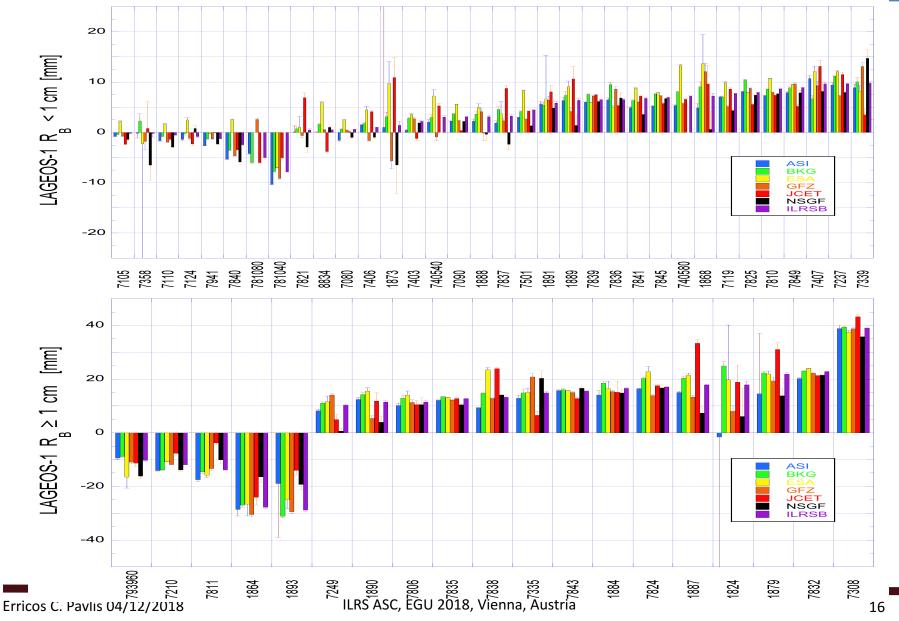

INDIVIDUAL ESTIMATE L1	INDIVIDUAL ESTIMATE L2	
ASI v220	ASI v220	
BKG v220	BKG v220	
DGFI v220	DGFI v220	
📄 ESA v220	ESA v220	
🗌 GFZ v220	GFZ v220	
JCET v220	JCET v220	
NSGF v220	NSGF v220	
ILRSA v220	ILRSA v220	
ILRSB v220	ILRSB v220	
Start (MM-DD-YYYY):		
End Date (MM-DD-YYYY)		
Station	Station \$	
Plot Size	Minimum Maximum	
Y axis		
LOESS regression	15 %	
	Submit	Reset form

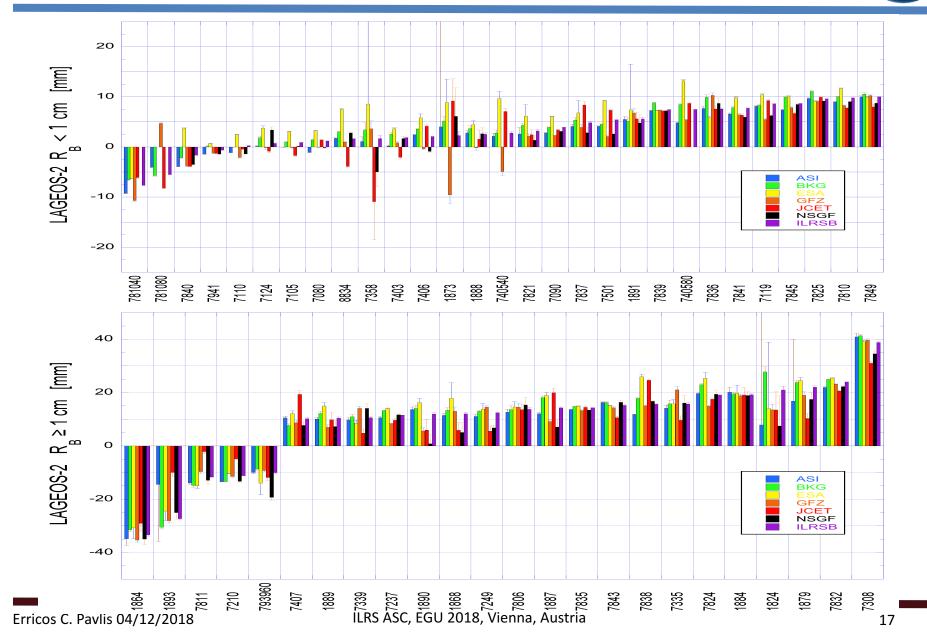
Station Systematic Error Project Results 1



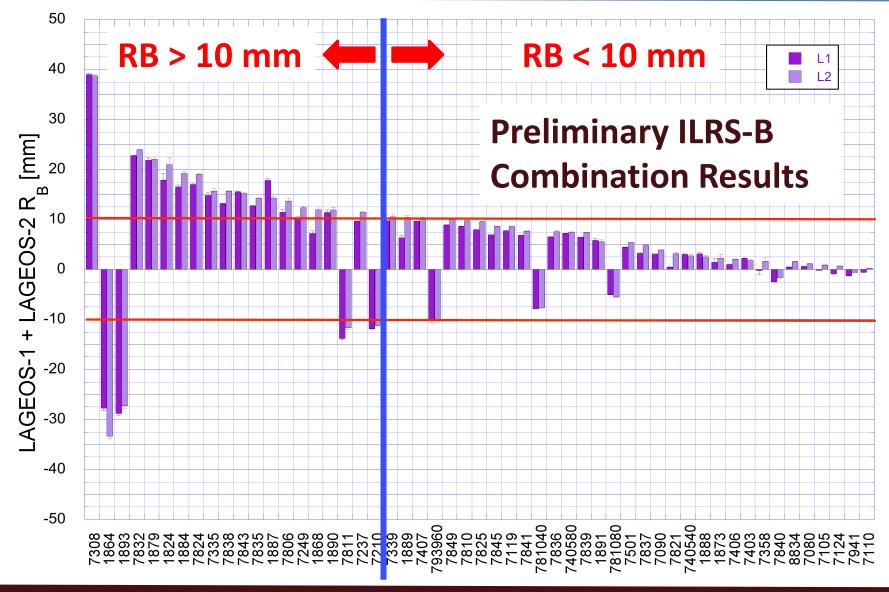








Long-term Systematic Errors LAGEOS


Long-term Systematic Errors LAGEOS-2

Long-term Systematic Errors LAGEOS1/2

- We need to evaluate the results from each AC and subsequently review the combined result for each LAGEOS;
- The combined time series will be reviewed for each system at each site and the goal here is to identify the "breaks" due to logged activities at the site (from their HST logs);
- At a next step we will need to discuss^{*} with the stations any additional "events" identified in their time series, to rationalize the adoption of additional corrections;
- The adopted long-term mean biases will be applied a priori;
- We will need to do a "dry run" for 1-2 months, then move to an operational phase by June 1st 2018 or soon thereafter.

We already have had discussions up to ~2014, so we have most of the answers by now

All Techniques were asked to:

- Implement linear mean pole model -- YES, agreed
- Develop and implement diurnal-subdiurnal tidal EOP models
 - -- We plan to adopt one of the models currently under test (HFEOP PP) by various ACs from all techniques
- Adopt post EGM2008 static gravity field based on ~all GRACE & GOCE data

 We will adopt a model of that class after a test through an ASCadministered PP

 Highest-fidelity time-variable gravity (TVG) model (degrees >1) using GRACE + SLR + geophysical fluid models for full space geodetic era, consistent with GRACE + GOCE standards

-- We have been using state-of-the-art gravity models and we can easily pick one that is even of newer vintage than GGM05S that we now use, hopefully the one that will come out from the final reanalysis of the GRACE data set (RL06), due to be available immediately after the launch of GRACE-FO sometime this spring. These models have associated TVG models that are equally of high quality and they are available for adoption.

- If a loading model is applied [but preferably not],
- (1) ensure consistency with TVG model;
- (2) ensure the same loading model is used by all techniques and all ACs;
- (3) provide contribution of loading corrections to the right-hand side of the normal equation in SINEX.

- We will not include a loading model in the reanalysis product for the next ITRF, because in that case we would have to provide enough information for you to be able to rigorously remove it, a capability that we do not currently have, which means developing a capability that would delay our reanalysis with very little to gain for us.

 Derive and implement models for instrument/monument thermal 3D effects for all techniques; validate present VLBI model

Collect metadata needed to implement instrumentmonument thermal effect models

-- We do not think that this is a task for the analysts and we do not see how we could do this in time for the next reanalysis. We have neither the expertise nor the resources to create such models. Although VLBI has been doing this for several years now, they are dealing with very similar antennae at their sites. In this case, each SLR system is a unique environment and we would have to have the local groups involved to provide the data and measurements for such a model. These deformations are not of appreciable magnitude to warrant the development of such a model. We can consult with the Network & Engineering SC to look deeper into this question, however, I doubt that there is anything that we can do in less than a year, which is the kind of timeline that we are shooting for here.

• IERS Conventions updates to document all the above

– We agree!

- <u>SLR SPECIFIC:</u>
- Add estimation/handling of station Range Biases
 - This is already agreed and implemented

Use updated CoM offsets (target signature corrections)

 A preliminary model will be available by EGU2018, the complete model by this coming summer

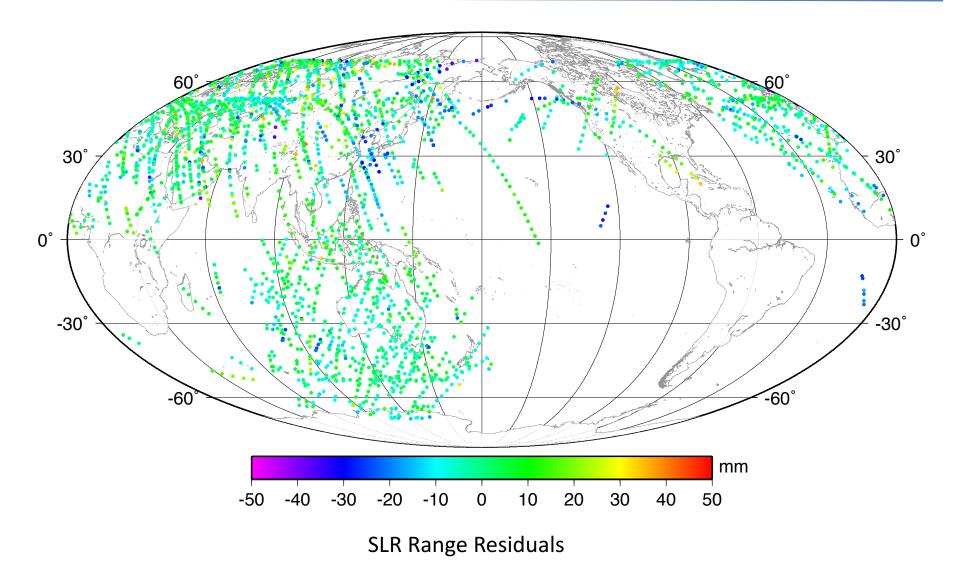
Add estimation/handling of Time Biases

-Time biases are now modeled based on T2L2 results

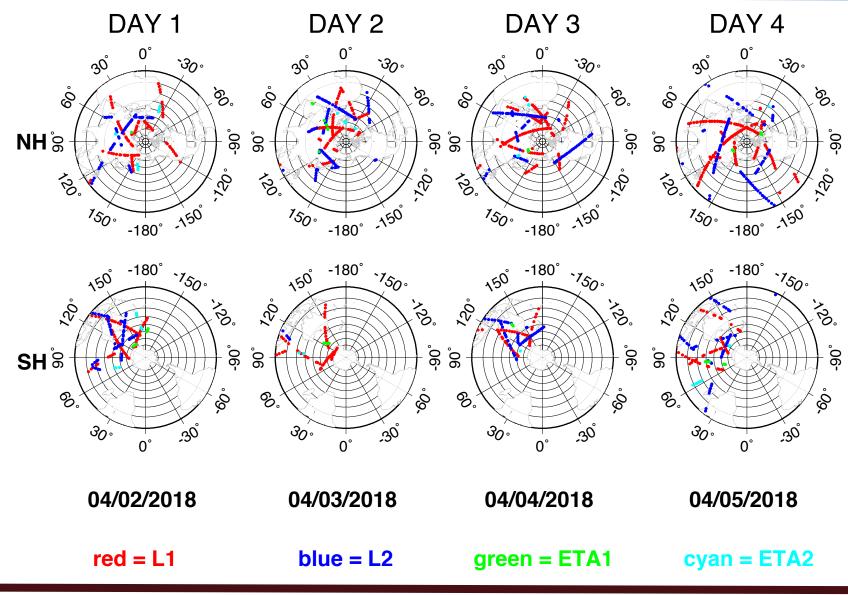
 Include applied R_B & T_B in SINEX file for next contribution to ITRF with their constraint information

– The SINEX will contain the $R_B \& T_B$ values applied to each station

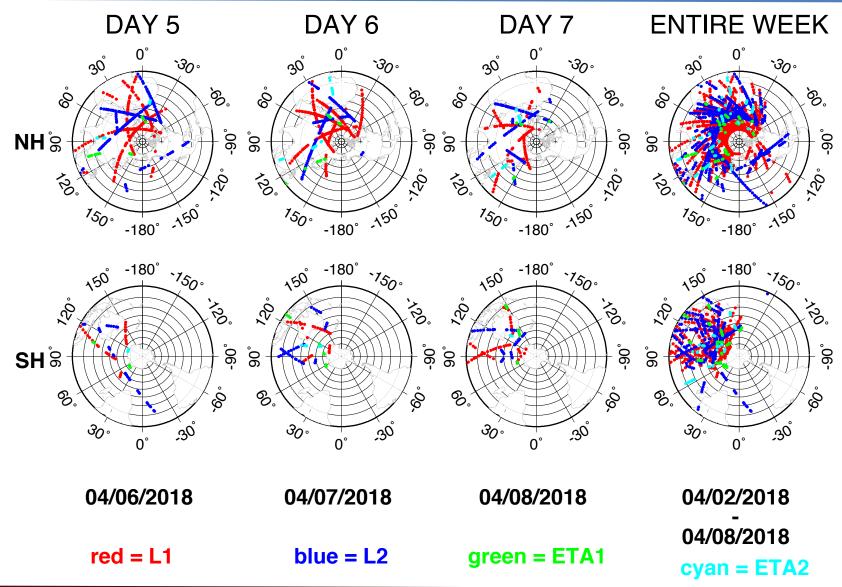
- We need to wait until the end of next summer(?) to start our reanalysis, if we are to use the latest and best CoM estimates for the targets we will use in ITRF development: LAGEOS 1 & 2, LARES and ETALON 1 & 2;
- We will start our re-analysis with the use of the adopted long-term biases and constrained adjustment of the remaining bias (NOT free at the ~1 m level anymore!), which should be completed by early/mid-2020, when the CCs will have a stable set of contributions to start the combination process;
- The CCs estimate they need 6-8 months to complete this process based on the ITRF2014 experience (and the prior models);
- This implies that we should be able to include most if not all of 2020 in the initial step of the combination, work out any issues with the individual contributions, and by the time all these are cleared, we can include the remainder of 2020, assuming that by that time all the ACs have corrected their issues and the processing of the remainder of 2020 becomes a trivial process;
- If ITRS can wait until early 2021, then we can certainly have all of 2020 included in the analysis. This plan assumes that all of the LARES data will also be part of this analysis this time around.



- The intent is to produce higher quality EOP in a shorter timeframe (e.g. the day after the data were collected);
- The benefits of such an expansion were demonstrated already with a simulation of tracking 24 GPS s/c that was presented at the 2013 IAG meeting in Potsdam;
- Last March, in discussions with Mathis Blossfeld while at Goddard, we agreed to propose the generation of a new ASC product, to be tested first in a short PP, where we focus on tracking the expanded list of targets for an improved EOP product (initially), and using these series to test the viability of generating additional products of interest.

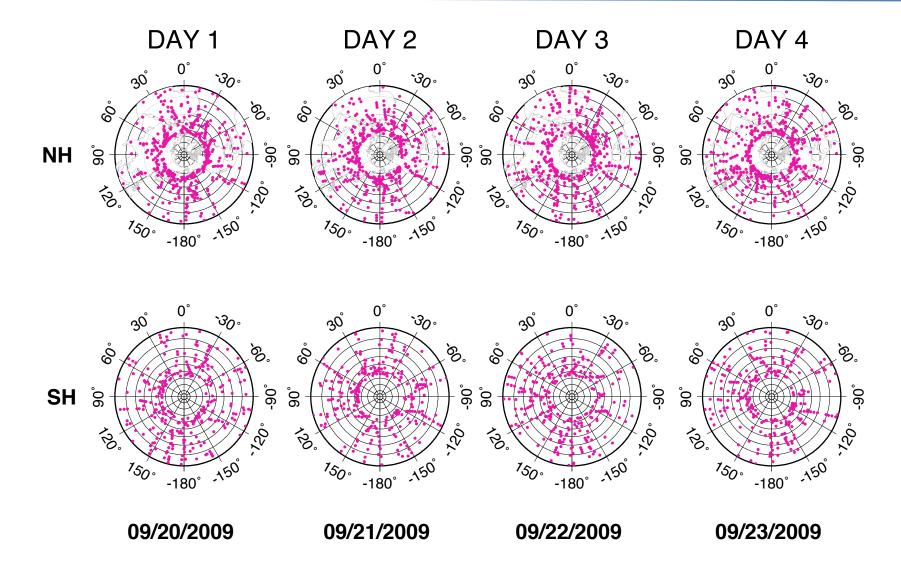


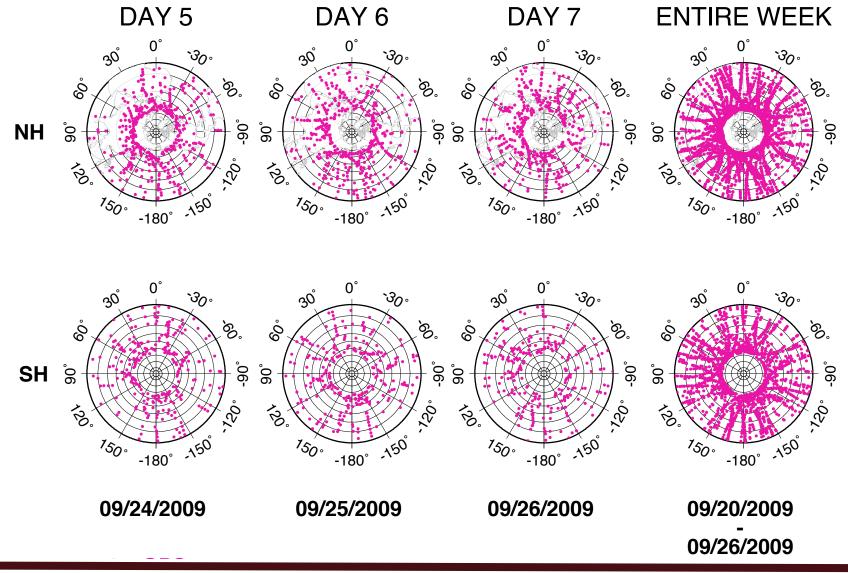
ILRS Weekly Product Example – Coverage (1)



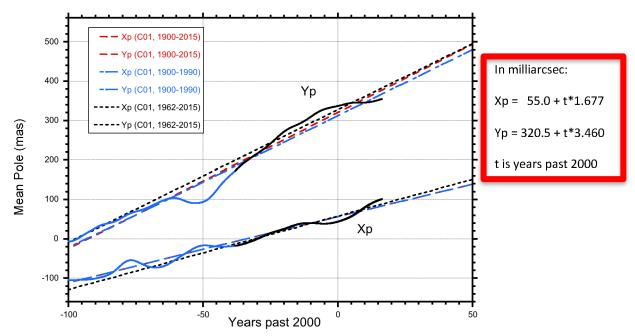
ILRS ASC, EGU 2018, Vienna, Austria

ILRS Weekly Product Example – Coverage (2)


Simulated ILRS Weekly Tracking of 24 GPS s/c


RC ILRS Tracking of 24 GPS s/c -- One Week's Coverage (1)

R ILRS Tracking of 24 GPS s/c -- One Week's Coverage (2)



Any of these fits to C01 seem reasonable and internally consistent, though the span of 1900-2015 provides the longest baseline for a linear (presumably GIA-dominated) mean pole

More important, even if we cannot be sure this represents the true effect on the mean pole due to GIA, it is likely to best represent the future linear trend of the IERS polar motion, and that variations about this are the variations we wish to preserve in the pole tide model

C SAR

- We have received ONLY 11 manuscripts so far (and one abstract was withdrawn);
- We have extended the submission deadline to end of May, with NO further extension for the submission process;
- Reviews start as soon as papers are submitted;
- We had one manuscript accepted already;
- PLEASE get your manuscripts submitted ASAP!
- Those of you who are reviewing manuscripts, please do not delay the process!

British Geological Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Gateway to the Earth

NSGF AC report

Graham Appleby, José Rodríguez

Vienna, 12nd April 2018

© NERC All rights reserved

Stuff

NSGF is submitting daily and weekly routine solutions again since December 2017

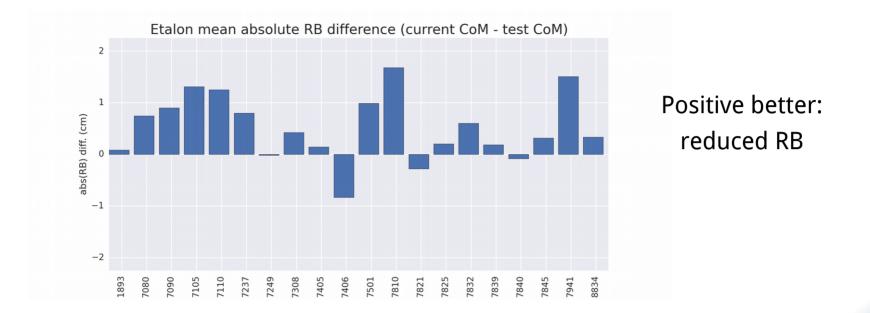
3-digit wavelength coding in SINEX output

25 years of LAGEOS data reprocessed for the pilot project on systematic errors

CoM modelling progress

CoM modelling

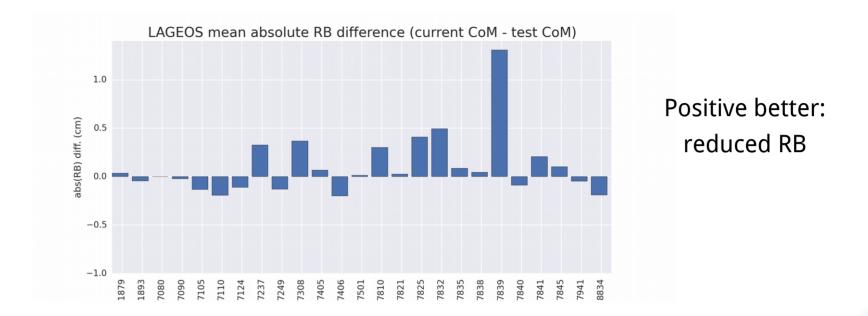
Redone everything from scratch, incorporating effects previously approximated


New modelling strategy for multi-photon stations (Monte-Carlo simulation)

Preliminary results for Etalon and LAGEOS:

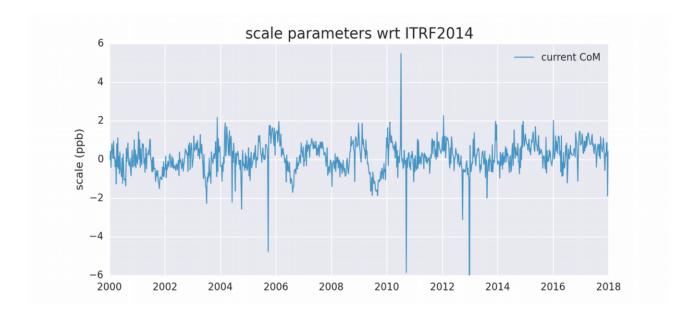
-encouraging for Etalon, with biases of ~1 cm removed from many stations -not so clear scenario for LAGEOS. But at least three important sites benefit from the new values unequivocally (Potsdam, Mount Stromlo and Zimmerwald)

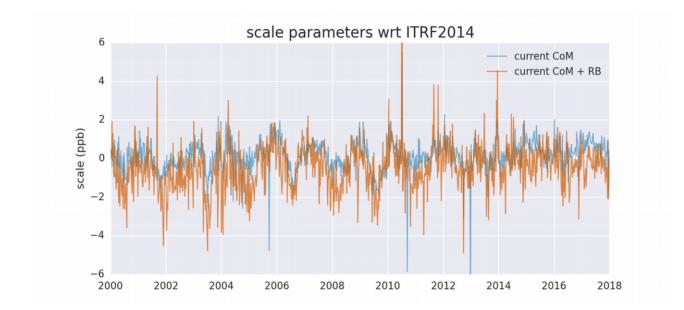
No silver bullets to eliminate LAGEOS biases found



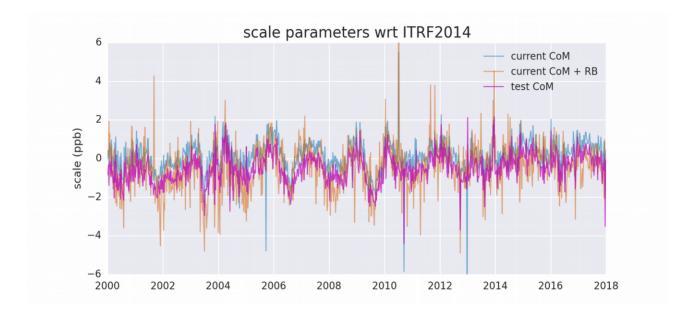
For Etalon, test CoM values remove about 1 cm biases from several stations

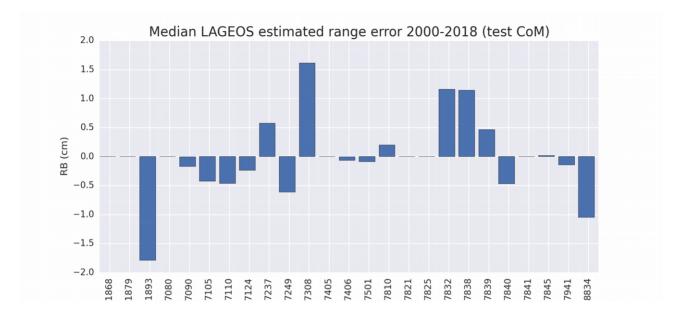
Very few stations see an increase in RB




More mixed picture for LAGEOS, although "gains" probably outweight "losses"

This does not inform us about the sign of the changes...





Similar average scale change when estimating RB and when using test CoM values: ~0.6 ppb Or in other words: both solution types have **increased** station heights ...but this is not the end of the story

Landing in the "right" place, on average, does not mean absence of problems

Everything indicates that the scale change is, at least partly, for the wrong reasons. As the new CoM values are for the most part lower, the average estimated RB becomes negative for some stations

Caveats:

- not final values
- some model assumptions to be checked
- sensitivity analysis not done
- realistically, accuracy no better than ~2-3 mm for LAGEOS and ~6 mm for Etalon
- a few other issues currently under investigation

LARES to be done shortly (Ajisai and Starlette next with lower priority)

New CoM offsets to be released when job is completed (LAGEOS, Etalon and LARES), together with table of systems details used as input for the computation

Handling of estimated errors must of course be done using the same CoM model in all solutions

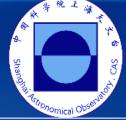
Site log and CRD

No field for supplying information about amplifiers (model, bandwidth)

Ranging policy should be specified for three different cases: LEO, LAGEOS, GNSS/Etalon

Detection rate in NP should be a more meaningful value than returns/NP duration (e.g. median return rate in NP)

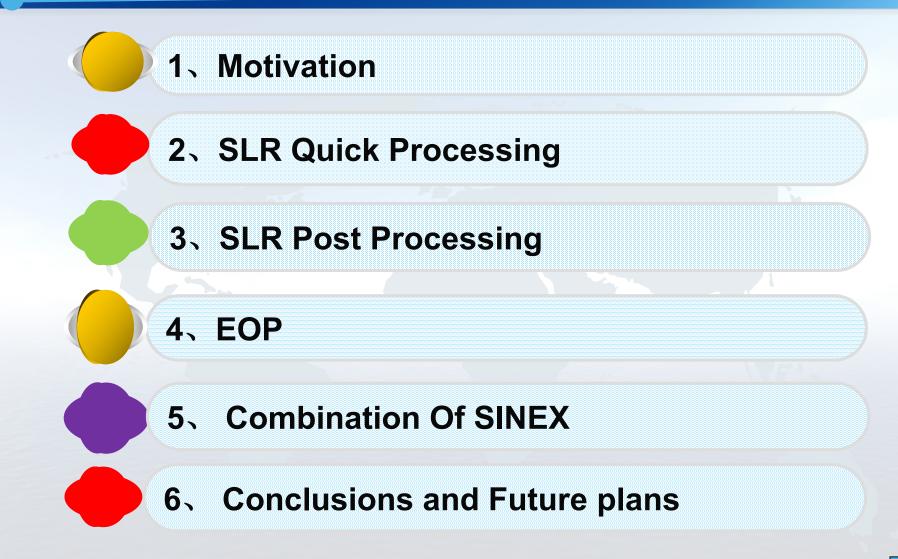
Request for typical calibration detection rate (or perhaps "adjusted to match satellite" if that is the case)


System identifier in CRD header means, to the best of my knowledge, nothing at all. It would be very useful if it referred to specific system configurations in the site log:

-enable the implementation of multiple CoM entries per station in a clean, elegant way -bring some desperately needed order to the detector section of the logs

Thank you

中国科学院上海天文台天文地球动力学研究中心 Shanghai Astronomical Observatory, CAS


ILRS ASC meeting

<u>Xiaoya Wang^{1,2}</u>, Fan Shao^{1,2}, Jing Zhang^{1,2}

 Shanghai Astronomical Observatory, Chinese Academy of Sciences, China
 University of Chinese Academy of Sciences, Beijing 100049, China; Email: wxy@shao.ac.cn

ILRS ASC meeting in Vienna, Austria, April 12

Outline

2

1. Motivation

As AAC of ILRS we would like to improve our models for better SLR data processing and provide normal products for users. So some models are checked and changed.
We would like to become AC of ILRS. So we do some study and find some problems. We hope somebody could help us to solve it or give us some suggestions.

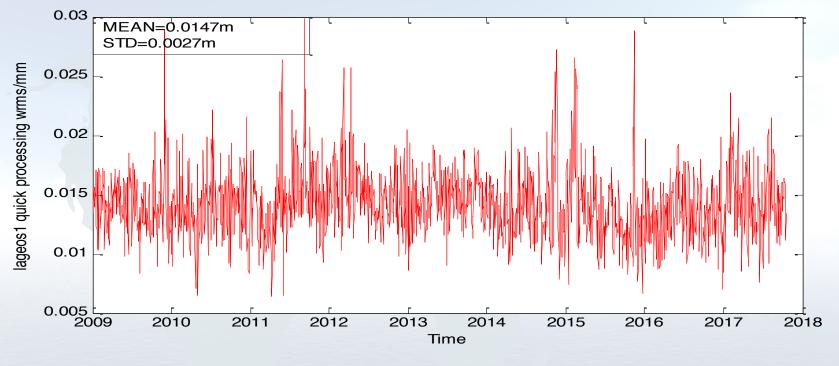


Figure1 Lageos1 quick processing RMS

4

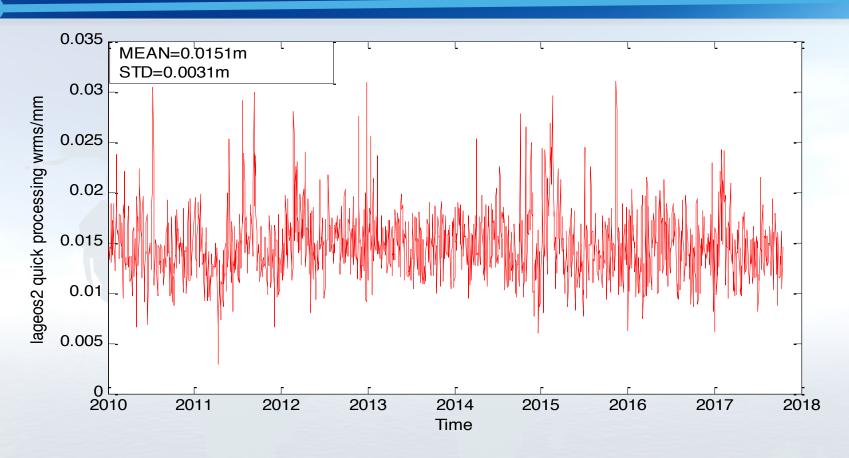


Figure2 Lageos2 quick processing RMS

5

Table1 SLR data Processing strategy				
Measurement models				
Troposphere	Mendes mapping function and Mendes-Pavlis zenith			
	delay model			
Satellite center of mass	station dependent in accordance with the official			
	ILRS CoM data			
Orbit Models				
Geopotential	EGM2008, 100×100degree			
Solid earth tides	IERS 2010 Conventions model			
Ocean tides	FES2004			
Ephemeris	EphemerisJPL DE421			
Terrestrial Reference Frames	SLRF2014 (a priori station coordinates and station			
	velocities)			

Tidal corrections	IERS 2010 Conventions			
Ocean loading	FES2004			
Earth Orientation Parameters	IERS 14 C04 a priori			
Estimated Parameters				
Stations	definition: SLR monument (eccentricities subtracted) at mean			
	epoch of each arc			
	a priori values: SLRF2014			
	a priori standard deviation: 1 m			
EOP	definition: x-pole, y-pole, UT1-UTC and LOD			
	epoch: at noon of each day			
	frequency: daily			
	a priori values: IERS 14 C04			
	a priori standard deviation: 20 masec, 2 msec			
Range biases	for some (non-core) stations			
	a priori value: 0 m			
	a priori standard doviation: 1m			

Comparison of tropospheric parameters obtained by different techniq

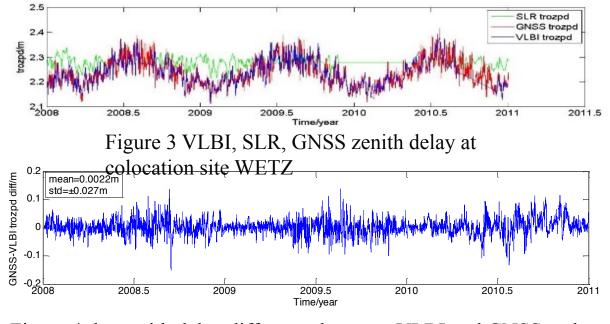


Figure 4 the zenith delay difference between VLBI and GNSS and spectrum analysis (WETZ)

 VLBI tropospheric zenith delay is approximately consistent with GNSS There exits a constant term and a long period (about 1 vear) term in the tropospheric zenith delay difference between SLR and GNSS.

Figure 5 the zenith delay difference between SLR and GNSS and spectrum analysis (WETZ)

°ò

Comparison of tropospheric parameters obtained by different techniq

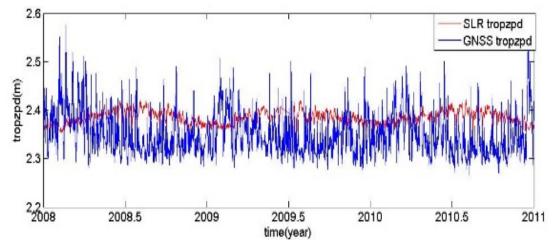
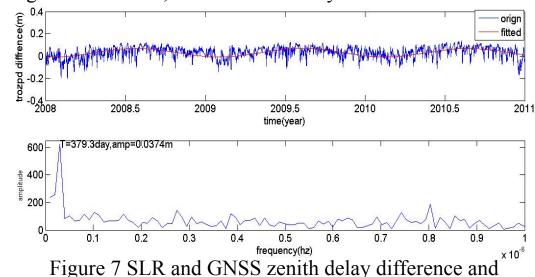



Figure 6 The SLR, GNSS zenith delay at collocation site YARA

There exits a constant term and a long period (about 1 year) term in the tropospheric zenith delay difference between SLR and GNSS.

Comparison of mapping function used in SLR and GNSS

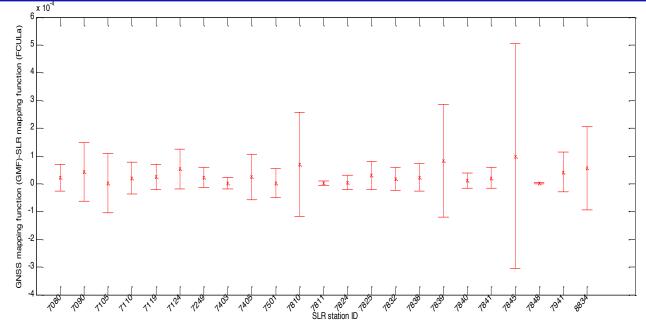


Figure 8. The difference of the mapping function between GNSS (GMF) and SLR (MP)

The red * represents the mean value of the difference, the length represents the standard deviation.

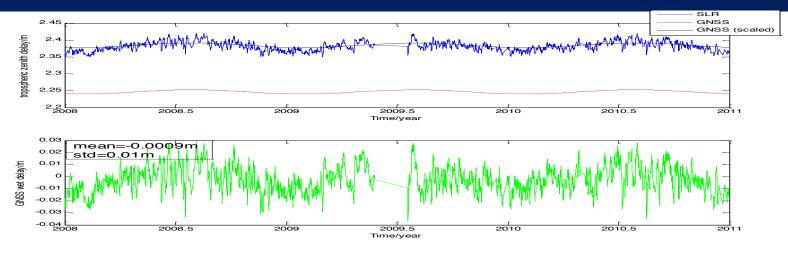


Figure 9. The zenith hydrostatic delay difference between SLR and GNSS at site YARA

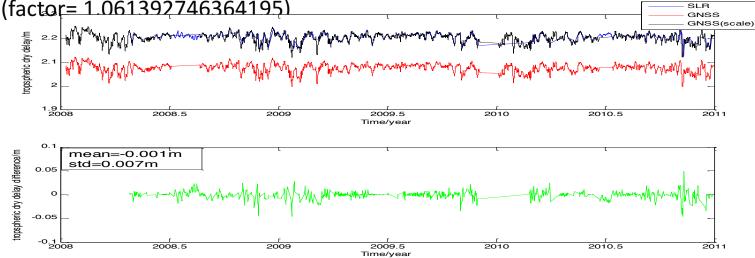
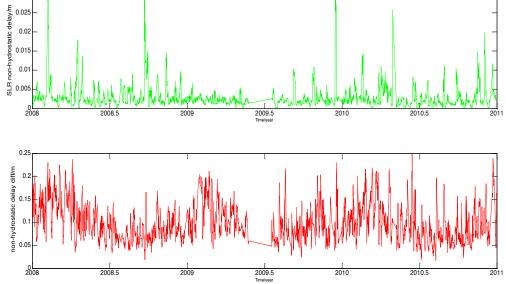



Figure 10. The zenith hydrostatic delay difference between SLR and GNSS at site ZIMM (factor= 1.061392746364195)

Estimating the ZTD parameters in SLR

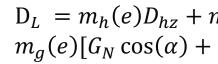


Figure 11. The estimated SLR and GNSS tropospheric wet delay at site YARA

Compared with the strategy used in GNSS, our SLR orbit determination didn't consider estimating the ZTD parameters. Then we add the ZTD parameters in our estimation. The results shows that there is still a big offset exiting in SLR and GNSS zenith wet delay, since radio wavelength technique is more sensitive to water vapor in troposphere than optical wavelength technique. Next step, we decide to consider the effect of the horizontal gradients of atmosphere on tropospheric delay in SLR, which is described by G. C. Hulley (2007). We will adopt the parameterization (1) used in GNSS to our SLR data processing, then estimate the horizontal gradient parameters G_N and G_E , finally compare them with GNSS.

Improvement of POD solution

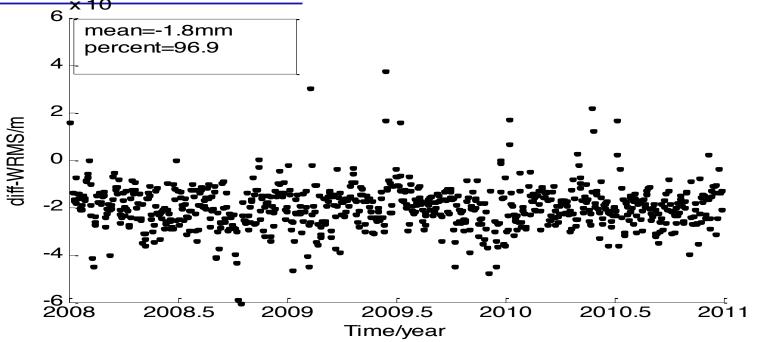


Figure 12. The observation WRMS after estimating the tropospheric parameters

We adopt the parameterization (1) used in GNSS to our SLR data processing. The result shows improvement in the WRMS of the global POD solution. As shown in figure 8, the negative points represents an improvement, and the improvement rate reach 96.9 percent, the average improvement is about 1.8mm.

Estimating the Horizontal gradient parameters in SLR

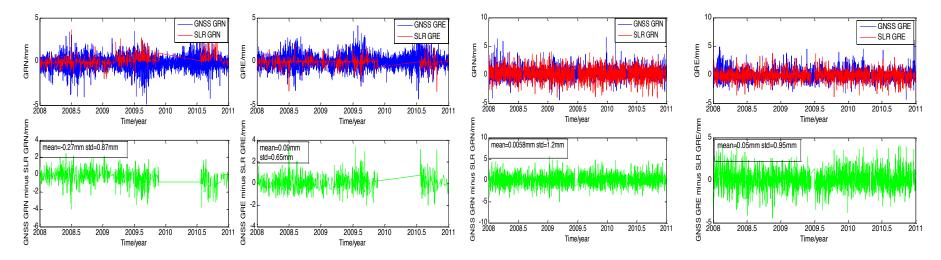


Figure 13 The GRN and GRE difference between SLR and GNSS at site WETZ

Figure 14 The GRN and GRE difference between SLR and GNSS at site YARA

We compare the horizontal gradient parameters G_N and G_E with GNSS hoparameters at SLR collocation sites WETZ and YARA. The result shows t significant difference between SLR GRN, GRE with GNSS. The mean value or reached 0.27mm in north component and 0.09mm in east component at site WE the mean value is small, but it has a big standard deviation. It may insufficient observational geometry since SLR system just can observe one

Modified Fuzzy C-Means algorithm :

A fuzzy partition of X in C clusters is represented by a matrix, $U = \{u_{xk}\}$, where

$$u_{xk} = [0,1],$$
 $\sum_{k=1}^{n} u_{xk} = 1,$ $\sum_{x \in X} u_{xk} > 0,$ $k = 1, ..., c.$

Step 1: Define c and ε , a small positive constant. Initialize

$$u_{xk}^{(0)} = \{0,1\}, \qquad k = 1, \dots, c$$

Step2: Calculate the initial cluster center

$$v_k^{(0)} = \frac{\sum_{x \in X} (u_{xk}^{(0)})^2 x}{\sum_{x \in X} (u_{xk}^{(0)})^2}$$

Step3: Calculate $g_{v_k}^{(0)}$

$$\wedge_{k} = \frac{\sum_{x \in X} \left(u_{xk}^{(0)} \right)^{2} (x - v_{k}^{(0)}) (x - v_{k}^{(0)})^{T}}{\sum_{x \in X}^{n} (u_{xk}^{(0)})^{2}}, \qquad \forall k = 1, \dots, d$$

Step4:t = t + 1, start the iteration

$$d_{xv_{k}} = \sqrt{(x - v_{k}) \wedge_{k}^{-1} (x - v_{k})^{T}}, \qquad \mu_{v_{k}}^{(t)} = \frac{1}{1 + d_{xv_{k}}^{2}}$$
$$u_{xk}^{(t)} = \frac{(\mu_{v_{k}}^{(t)})^{3/2} \sqrt{g_{v_{k}}^{(t-1)}}}{\sum_{j=1}^{c} \mu_{v_{j}}^{3/2} \sqrt{g_{v_{j}}^{(t-1)}}}, \qquad v_{k}^{(t)} = \frac{\sum_{x \in X} (u_{xk}^{(t)})^{2} x}{\sum_{x \in X} (u_{xk}^{(t)})^{2}}$$

Step 5: if $\left| v_k^{(t)} - v_k^{(t-1)} \right| < \varepsilon \quad \forall k \text{ Stop. Else go to Step 4.}$

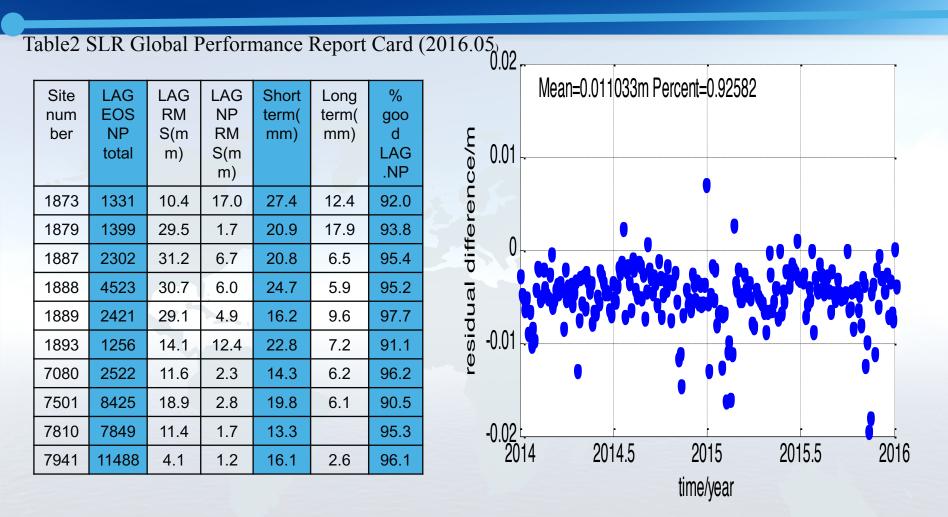


Figure 15. Observational residuals RMS difference after applying FCM reweighting station (solution 2)

3, SLR Post Processing

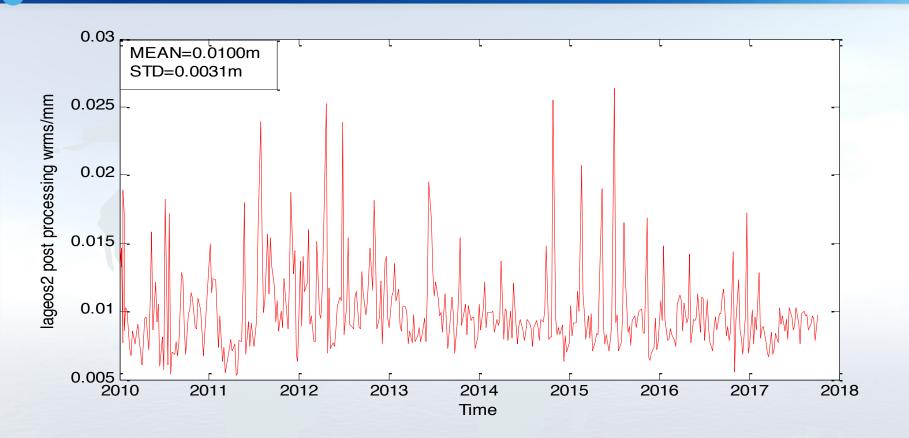


Figure 16. Lageos2 Post processing RMS

3、SLR Post Processing

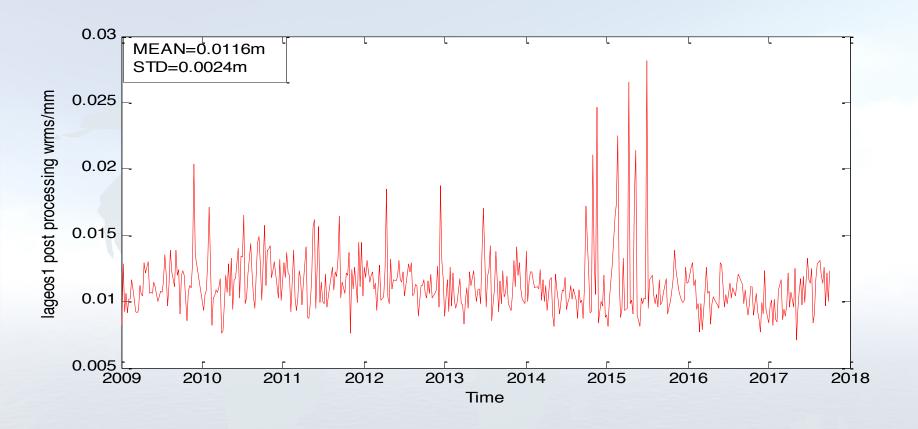
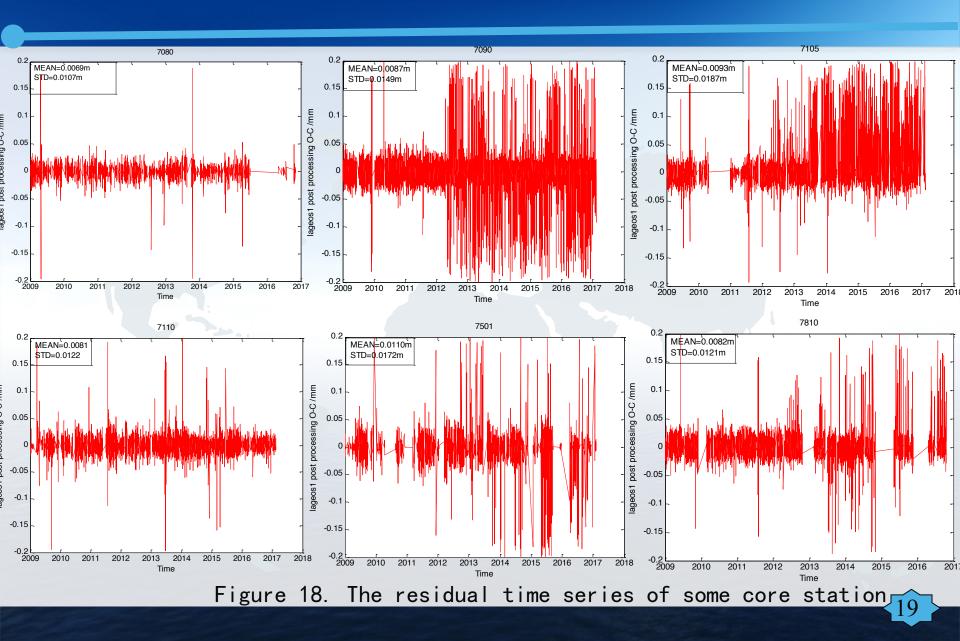
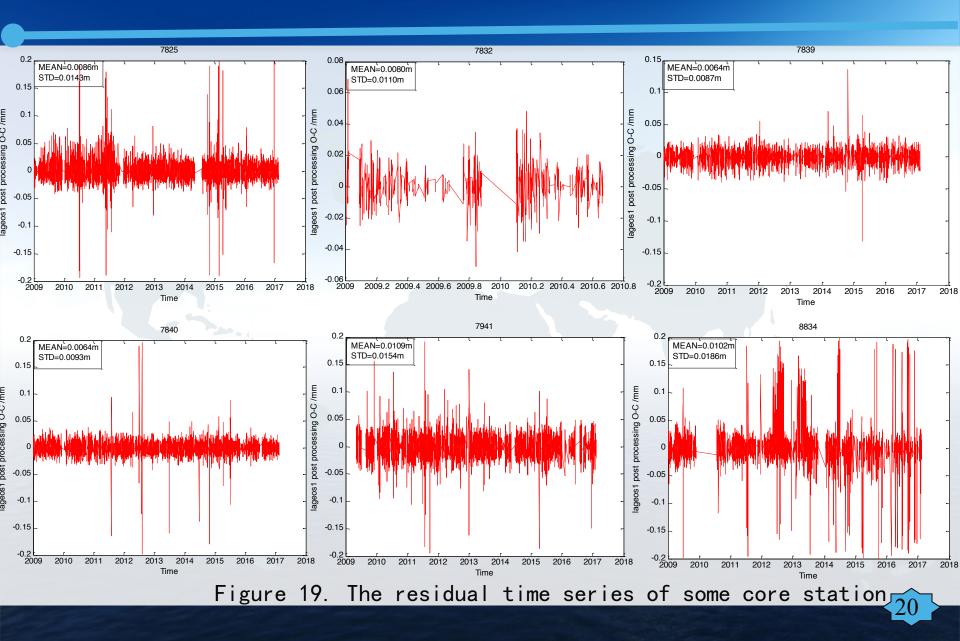




Figure 17 Lageos1 Post processing RMS

3, SLR Post Processing

3, SLR Post Processing

4, EOP

Table2 Statistics of EOP						
Series	Year	Px(mas)	Py(mas)	LOD(ms)		
					-2002	
SHAO	2008-2017	0.25	0.35	1.2		
4 _F						
					-1	
$\frac{1}{2008} = 2009 = 2010 = 2011 = 2012 = 2013 = 2014 = 2015 = 2016 = 2017 = 2018 = 1000000000000000000000000000000000$				2017 2018		
					2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 Time/year	
(^g) ² ⁴ ² ² ² ² ² ² ² ² ² ²						
2000 20		Time/year	1 2010 2010	2017 2010	 * Takata Wakata Mata Panda Wakata Manda Manda Mata Anala. A Mata Mata Mata Mata mata ta takata tak 	
Figure 20. The comparison of LOD with Time/year						
	ect to IE				Figure 21. The comparison of of pole	
					motion with respect to IERS EOP CO4	
					21	

5, Combination of SINEX

Step1: read SINEX file of each satellite

Step2: removing a priori constraints

Step3: eliminate the unconcerned parameters

Step4: accumulation of the normal equation

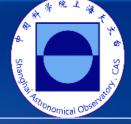
Step5: introduce a new datum

Step6: solve and use Robust Variance Component Estimation to fix the weight for each analysis center

5. Combination of SINEX

Problems:

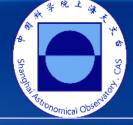
◆ If we do not removing a priori constraints, the combined results could be affected? If yes how much it is?


If we want to combined the weekly solution of each AC
, we should transfer the SINEX file to a unique datum
 (eg SLRF2014)?

◆Since the covariance of EOP are very small, when we begin the combination, the weight of EOP are very big. Once it exists a big difference between AC solutions, the EOP error will be shifted to the station solution. How to solve it ?

□Some SLR models should be improved. It is better for **SLR tropospheric parameters** estimated and SLR horizontal gradient parameters considered. More reasonable weighting such as FCM reweighting methods should be applied. □ The LODs of SLR has a bigger difference from IERS CO4 LOD. It needs to continue to look for the reasons.

The combination of different AC solutions need to be continued and our SINEX solutions need to be evaluated.


中国科学院上海天文台天文地球动力学研究中心 Shanghai Astronomical Observatory, CAS

Acknowledgments ILRS

National Natural Science Foundation of China (NSFC) No. 11173048

Ministry of Science and Technology of China No.2015FY310200

ILRS ASC meeting in Vienna, Austria, April 12

中国科学院上海天文台天文地球动力学研究中心 Shanghai Astronomical Observatory, CAS

Thank you for your attention!

ILRS ASC meeting in Vienna, Austria, April 12