

Fig. 1 HY-2A satellite and the LRA

Fig. 2 LRA configuration for HY-2A

Reference Point

Fig. 3 The structural profile of LRA for HY-2A

Fig. 4 The definition of the orientation (α, β) of each cube \mathbf{P} with spherical coordinates

The spherical center point (reference point) of LRA is $(311,-268,994) \mathrm{mm}$.
The range correction of LRA from spherical center is 73.7 mm .

The LRA reference point is spherical center point of LRA. The position of the center of the front face of each corner cube is as following (Fig.3):

No. $1(-61.74,-61.74,78.62) \mathrm{mm}$, No. $2(-87.32,0,78.62) \mathrm{mm}$, No. $3(-61.74,61.74,78.62) \mathrm{mm}$,
No. 4 ($0,87.32,78.62$) mm, No. $5(61.74,61.74,78.62) \mathrm{mm}$, No. $6(87.32,0,78.62) \mathrm{mm}$,
No. 7 (61.74, -61.74, 78.62) mm, No. $8(0,-87.32,78.62) \mathrm{mm}$, No. $9(0,0,117.5) \mathrm{mm}$

The definition of the orientation (α, β) of each cube with spherical coordinates as following (Fig.4):

No. $1\left(48^{\circ}, 225^{\circ}\right)$, No. $2\left(48^{\circ}, 180^{\circ}\right)$, No. $3\left(48^{\circ}, 135^{\circ}\right)$, No. $4\left(48^{\circ}, 90^{\circ}\right)$, No. $5\left(48^{\circ}, 45^{\circ}\right)$, No. 6 $\left(48^{\circ}, 0^{\circ}\right)$, No. $7\left(48^{\circ}, 315^{\circ}\right), \operatorname{No.} 8\left(48^{\circ}, 270^{\circ}\right), \operatorname{No.~} 9\left(0^{\circ}, 0^{\circ}\right)$

Dihedral angle offset(s) and manufacturing tolerance:
No. 1 (2.0 1.7 1.9) ", No. 2 (1.8 1.9 1.9) ", No. 3 (1.7 1.9 2.0) ",
No. 4 (1.9 1.9 1.8) ", No. 5 (1.9 1.9 2.0) ", No. 6 (1.7 1.9 2.1) ",
No. 7 (2.0 2.1 2.2)", No. 8 (1.9 2.1 2.1) ", No. 9 (2.1 2.2 2.1)"

Refractive Index and Dispersion:

*1 Polynomial Equation: $n^{2}=A_{0}+A_{1} \lambda^{4}+A_{2} \lambda^{2}+A_{3} \lambda^{-2}+A_{4} \lambda^{-4}+A_{5} \lambda^{-6}+A_{6} \lambda^{-6}+A_{7} \lambda^{-10}$ with λ in $\mu \mathrm{m}$
*2 Sellmeier Equation: $n^{2}-1=A_{1} \lambda^{2} /\left(\lambda^{2}-B_{1}\right)+A_{2} \lambda^{2} /\left(\lambda^{2}-B_{2}\right)+A_{3} \lambda^{2} /\left(\lambda^{2}-B_{3}\right)$ with λ in $\mu \mathrm{m}$
${ }^{*} 3 \Delta n / \Delta T$ Equation: $\Delta n / \Delta T[p p m / C]=C_{0}+C_{1} \lambda^{-2}+C_{\lambda} \lambda^{-4}+C_{3} \lambda^{-6}$ with λ in μm
The above dispersion equations for SiO_{2} were fit to the refractive indices of 20 wavelengths from 1129 nm to 185 nm .

