Satellite Name:
Date of Submission:

Compass-MS1
2015.09.20

SECTION III: RETROREFLECTOR ARRAY INFORMATION:

A prerequisite for accurate reduction of laser range observations is a complete set of pre-launch parameters that define the characteristics and location of the LRA on the satellite. The set of parameters should include a general description of the array, including references to any ground-tests that may have been carried out, array manufacturer and whether the array type has been used in previous satellite missions. So the following information is requested:

Retroreflector Primary Contact Information:
Name: Zhang Zhongping
Organization and Position: Shanghai Astronomical Observatory,Chinese Academy of Sciences. Professor Address: No.80,Nandan Road,Xuhui,Shanghai,P.R,China

Phone No.: 86-21-64696290
E-mail Address: zzp@shao.ac.cn

Array type:
\bigcirc single reflector \bigcirc spherical \bigcirc Hemispherical/Pyramid Planar
O other (specify: \qquad)

Attach a diagram or photograph of the satellite that shows the position of the LRA, at the end of this document.

区 Attached

Attach a diagram or photograph of the whole LRA at the end of this document.
© Attached 〇 Same as above, Not attached (acceptable only for a cannonball satellite)

Array manufacturer:
NCRIEO, China

Link (URL and/or reference) to any ground-tests that were carried out on the array: none

Has the LRA design and/or type of cubes been used previously?

For accurate orbital analysis it is essential that full information is available in order that the 3dimensional position of the satellite center of mass may be referred to the location in space at which the laser range measurements are made. To achieve this, the 3-D location of the LRA phase center must be specified in a satellite-body-fixed reference frame with respect to the satellite's mass center. In practice this means that the following parameters must be available at 1 mm accuracy or better.

Define the satellite-body-fixed XYZ coordinates (i.e. origin and axes) on the spacecraft:
(specify) (add a diagram in the attachment)
see attachment(The Position of the Compass-MS1 Laser Retro-Reflector Array Phase Center)

Relate the satellite-body-fixed XYZ coordinates to a Celestial/Terrestrial/Solar Reference Frame including the attitude control policy:
(specify) (add a diagram in the attachment)
The satellite-body-fixed Z axis always points to the Earth's center.
The satellite-body-fixed X axis is parallel to the direction of satellite flight.

The 3-D location of the satellite's mass center in satellite-body-fixed XYZ coordinates is:
O Always fixed at $(0,0,0)$
© Always fixed at ($-10.1 \quad,-8.4 \quad,-11 / / .8)$ in mm
O Time-varying by approximately (\qquad) mm during the mission lifetime.
Will a time-variable table of the mass center location be available on the web?
○ No ○ Yes (URL: \qquad

The 3-D location (or time-variable range) of the phase center of the LRA in the satellite-body-fixed XYZ coordinates:

The following information on the corner cubes must also be supplied.
The XYZ coordinates referred to in the following are given in:
© Satellite-body-fixed system (same as above)
○ LRA-fixed system (specify below)
(specify the origin and orientation) (add a diagram in the attachment)

List the position (XYZ) of the center of the front face of each corner cube, and the orientation (two angles or normal vector) and the clocking (horizontal rotation) angle of each corner cube. Note that the angles should be clearly defined.

O Attached at the end of this document
© Listed here (acceptable for small number (10 or fewer) of corner cubes)
(specify) (add a diagram in the attachment)
The normal vector of each CCR points to the earth's center.

Is the corner cube recessed in its container (i.e. can the container obscure a part of the corner cube)? \bigcirc No \bigcirc Yes (specify below)
(specify) (add a diagram)
none

The size of each corner cube: Diameter ($33 \quad$) mm Height ($\quad 23.3$ _ $) \mathrm{mm}$

The material from which the cubes are manufactured (e.g. quartz):
quartz

The refractive index of the cube material
$=\underline{1.461}$ for wavelength $\lambda=0.532$ micron
$=\underline{\text { see attachment(Refractive Index and Dispersion) }}$ as a function of wavelength λ (micron):

The group refractive index of the cube material, as a function of wavelength λ (micron):
$=1.485$ for wavelength $\lambda=0.532$ micron
$=1.462 @ 1064 \mathrm{~nm}$

Dihedral angle offset(s) and manufacturing tolerance (in arcseconds):
1.1+/-0.2aresec

Radius of curvature of front surfaces of cubes:
\qquad

Flatness of cubes' surfaces:
0.1 wavelength

Back-face coating:
\bigcirc Uncoated \bigcirc Coated (specify the material:

Other comments on LRA:

(specify) (add a reference to a study of the optical response simulation/measurement if available) (add a diagram if applicable)
\square

Fig. 1 Compass-MS1 satellite and the LRA

Fig. 2 LRA of Compass-MS1

The Position of the Compass-MS1 Laser Retro-Reflector Array Phase Center

O - Satellite Coordinate Origin
Z - Nadir, to the Earth's Center
X - Direction of Satellite Flight
Y - by right-hand rule
CoM - Satellite Center of Mass
LRA Phase Center -
Laser Retro-reflector-Array's Phase Center

Vector C is from the satellite coordinate origin to the satellite's center of mass (CoM).
Vector L is from the satellite coordinate origin to the mass center of the LRA containing 90 corner cubes.
$C=(-10.1,-8.4,1177.8) \mathrm{mm}$.
$\mathrm{L}=(602,-80.1,2418.8) \mathrm{mm}$.
The plane of the front faces of the cubes is +16.0 mm in the Z direction from the LRA mass center.
The cubes' phase centers are $-\mathrm{h} \times \mathrm{n}$ in the Z direction from the plane of the cubes.
For the Compass-MS1 cubes, $\mathrm{h}=23.3 \mathrm{~mm}, \mathrm{n}=1.461 @ 532 \mathrm{~nm}$. So phase centers are -34.0 mm in Z .
So z -component of array phase center is $(-34.0+16.0)=-18.0 \mathrm{~mm}$ from the LRA mass center.
Let L^{\prime} as the vector from the satellite coordinate origin to the phase center of the LRA. We have $L^{\prime}=(602,-80.1,2418.8-18.0) \mathrm{mm}$, i.e. $\mathrm{L}^{\prime}=(602,-80.1,2400.8) \mathrm{mm}$

Finally, the vector CP from the satellite center of mass to the phase center of the LRA is $\mathrm{CP}=\mathrm{L}^{\prime}-\mathrm{C}$ So $\mathrm{CP}=(602,-80.1,2400.8)-(-10.1,-8.4,1177.8)=(612.1,-71.7,1223.0)$ in the satellite fixed frame.

Refractive Index and Dispersion:

Conditions: $22^{\circ} \mathrm{C}, 760 \mathrm{~mm} \mathrm{Hg}$, N_{2}				
Wavelength [Vacuum] [nm]	Refractive Index ${ }^{2}$ n	Thermal Coefficient $\Delta n / \Delta T^{3}$ [ppm/C]	Polynomial Dispersion Equation Constants ${ }^{\prime}, 22^{\circ} \mathrm{C}$	
1128.950	1.448866	9.6	A_{0}	$2.104025406 \mathrm{E}+00$
$1014.260 \mathrm{n}_{\text {t }}$	1.450241	9.6	A_{1}	-1.456000330E-04
$852.344 \mathrm{n}_{\text {s }}$	1.452463	9.7	A_{2}	-9.049135390E-03
$706.714 \mathrm{n}_{\text {r }}$	1.455144	9.9	A_{3}	$8.801830992 \mathrm{E}-03$
$656.454 \mathrm{n}_{\mathrm{c}}$	1.456364	9.9	A_{4}	$8.435237228 \mathrm{E}-05$
632.990	1.457016	10.0	A_{5}	$1.681656789 \mathrm{E}-06$
$587.725 \mathrm{n}_{\text {d }}$	1.458461	10.1	A_{6}	-1.675425449E-08
546.227 n e	1.460076	10.2	A_{7}	$8.326602461 \mathrm{E}-10$
$486.269 \mathrm{n}_{\mathrm{F}}$	1.463123	10.4	Sellmeier Dispersion Equation Constants ${ }^{2}, 22{ }^{\circ} \mathrm{C}$	
$435.957 \mathrm{n}_{\mathrm{g}}$	1.466691	10.6		
$404.770 \mathrm{n}_{\mathrm{h}}$	1.469615	10.8	A_{1}	0.68374049400
$365.119 \mathrm{n}_{\text {I }}$	1.474539	11.2	A_{2}	0.42032361300
334.244	1.479764	11.6	A_{3}	0.58502748000
312.657	1.484493	12.0		
253.728	1.505522	13.9	B_{1}	0.00460352869
228.872	1.521154	15.5	B_{2}	0.01339688560
214.506	1.533722	17.0	B_{3}	64.49327320000
206.266	1.542665	18.1	$\Delta \mathrm{n} / \Delta \mathrm{T}$ Dispersion Equation Constants ${ }^{3}, 20-25^{\circ} \mathrm{C}$	
194.227	1.558918	20.3		
184.950	1.575017	22.7	C_{0}	9.390590
			C_{1}	0.235290
			C_{2}	-1.318560E-03
			C_{3}	$3.028870 \mathrm{E}-04$
			Other Optical Properties	
				0.006797
			Stress Coefficient	$35.0 \mathrm{~nm} / \mathrm{cm} \mathrm{MPa}$
			Abbe Constants:	
			V_{e}	67.6
			V_{d}	67.8

*1 Polynomial Equation: $n^{2}=A_{0}+A_{1} \lambda^{4}+A_{2} \lambda^{2}+A_{3} \lambda^{-2}+A_{4} \lambda^{-4}+A_{5} \lambda^{-6}+A_{6} \lambda^{-8}+A_{7} \lambda^{-10}$ with λ in μm
*2 Sellmeier Equation: $n^{2}-1=A_{1} \lambda^{2} /\left(\lambda^{2}-B_{1}\right)+A_{2} \lambda^{2} /\left(\lambda^{2}-B_{2}\right)+A_{3} \lambda^{2} /\left(\lambda^{2}-B_{3}\right)$ with λ in μm
*3 $\Delta n / \Delta T$ Equation: $\Delta n / \Delta T[p p m / C]=C_{0}+C_{1} \lambda^{-2}+C_{\lambda} \lambda^{-4}+C_{3} \lambda^{-6}$ with λ in μm
The above dispersion equations for SiO_{2} were fit to the refractive indices of 20 wavelengths from 1129 nm to 185 nm .

