International Laser Ranging Service Data Formats & Procedures Working Group

Agenda

Monday, April 20, 2009, 19:30-21:00, Vienna, Austria Room: Seminarraum (SEM 124), Vienna University of Technology, Gusshausstr.27-29

1. Welcome and Introduction	Wolfgang Seemüller
2. Membership	Wolfgang Seemüller
3. Refraction Study Group	Erricos Pavlis
4. Formats Study Group - CRD format status - tracking restrictions - leap seconds in CPF files	Randy Ricklefs
5. Quarantining of data from new stations	Mike Pearlman
6. Acceptance/test of CRD at ILRS Data Centres	Werner Gurtner
7. Other Business, next meeting	All

International Laser Ranging Service

Data Formats & Procedures Working Group

Participants

Monday, April 20, 2009, 19:30-21:30 Vienna, Austria Seminarraum SEM 124

Name

Wolfgang Seemüller Werner Gurtner Julie Horvath Randy Ricklefs Graham Appleby Carey Noll Mike Pearlman Erricos C. Pavlis Scott Wetzel Institution

e-mail address

DGFI Univ. of Berne NASA SLR/HTSI CSR/UT NERC/SGF NASA GSFC CfA JCET/Goddard NASA SLR/HTSI seemueller @dgfi.badw.de gurtner @aiub.unibe.ch Julie.Horvath@honeywell.com ricklefs@csr.utexas.edu graham.appleby@nerc.ac.uk carey.noll@nasa.gov mpearlman@cfa.harvard.edu epavlis@umbc.edu scott.wetzel@honeywell.com

CRD format status

- All stations should now be producing CRD-formatted normal points!
- 1 station has passed OC tests and is awaiting analysts' validation (MLRS)
- Six stations (Matera, Herstmonceux, Zimmerwald, Mt. Stromlo, Changchun, Wettzell) are awaiting OC (EDC) format validation before being sent to NASA OC for short arc validation and then to the analysts
- ~7 stations are submitting CRD full rate data to T2L2 experiment, and validation is an issue
- Validation flowchart and errata page now on ILRS website

CRD format implementation questions

- 1)What is status of EDC format validation?
- 2)How soon will validated EDC data flow to NASA OC for short arc validation?
- 3)How soon will analysts be ready to validate data?
- 4)How will NASA OC contract change effect the timetable?
- 5) How should we change the timetable?
- 6)How do we handle day wrap around?

Satellite tracking restrictions

- Mission tracking request form now includes tracking restrictions section
- Power restriction added to ILRS web page
- Missions using restrictions:
 - Elevation: ICESat
 - Go/no-go: ICESat, ALOS, LRO, LLR (new)
 - Pass segments: GP-B, ALOS
 - Power: LRO
- Survey was sent by CB to all ranging stations in January; there have been at least 2 reminders

Satellite tracking restrictions status

- 25 ILRS stations responded (plus Mark Davis for Stafford)
 - 13 have elevation restrictions implemented;
 - 9 plan to implement: from 1 month to end of 2009 or undefined
- 14 have go/no-go implemented
 - 9 plan to implement: from 1 month to end of 2009
- 13 have pass segments implemented
 - 9 plan to implement: from 1 month to end of 2009
- 1 has power restrictions implemented in automation
 - 11 plan to implement: from 1 month to end of 2009
 - 11 have some level of manual control of laser power and beam divergence.
- Some have promised to implement certain restriction when it becomes necessary.

SLR Tracking Restriction by Station

			_	Type of restriction							
Elevation G0			Go/Nogo Flag Pass Segment		Power		1				
Site	D	Code	Y/N*	Plans?	Y/N*	Plans?	Y/N*	Plans?	Y/N*	Plans?	Comments
Golosiiv	1824	GLSL	Y		Ν	Y: months	Ν	Y: months	Ν	N:>year	
Lviv	1831	LVIV	N	Y: 2-3 mon	Ν	Y:6 mon	Ν	Y: 2-3 mon	Ν	N	Power restrictions "impossible"
Maidanak l	1863	MAID									
Maidanak 2	1864	MAIL									
Komsomols k	1868	KOML									
Me nd e le e vo	1870	MDVL									
S ime iz	1873	S IML	N	Y: 1 mon	N	Y: 1 mon	N	Y: 1 mon	N	N	03/18/09
Riga	1884	RIGL	N	N	Y	_	Y	-	N	N	Elevation and Power restrictions possible to add
Katsivelv	1893	KTZL			-		-				
Mc Donald	7080	MDOL	Y	-	Y	-	Y	-	М	Y	
Yarragadee	7090	YARI.	Y	_	Y	_	Y	_	N	N	Manual control over power and divergence
Greenbelt	7105	GODL	Ŷ	-	Ŷ	-	Ŷ	-	N	N	Manual control over power and divergence
Momment Peak	7110	MONI	v	_	v	_	v	_	N	N	Manual control over power and divergence
Haleakala HI	7119	HA46	Ŷ	_	v		Ŷ	_	N	N	Manual control over power and divergence
Tahiti	7124	THT	v		v		v		N	N	Manual control over power and divergence
Wahan	723	WITH	-	-	-		-	-			
Changebun	7231	CHAI									
Deline	7240	DET									
Deijing Vəzərəj	7200	VOCC	N		Ъſ		М		NI	NI	Peatriction implemented for ALOS only: no automated restriction
Tono anel	7250	CMCI	IN N/	77	372		1VI		IN NA		Menual control over power and divergence
Tanegashim	7508	GIVISL	11/1	ľ	1	-	11/1	Ŷ	IVI N I	Y NI	Manual control over power and divergence
Arequipa	7403	AREL	Y	-	Y DT	- V 2 C	Y	-	N	N	two manual power settings; no plans for other implementation
Concepcion	7405	CONL	Y		N	1:3-6 mon	N	Y: 3-6 mon	N	mon	
San Juan	7406	SJUL									
Hartebeesthoek	7501	HARL	Y	-	Y	-	Y	-	Ν	N	Manual control over power and divergence
Me ts a ho vi2	/806	METL									
Zimme rwald	7810		Y	-	Y	-	Y	-	Y		Software-controller attenuator in laser beam
Borowiec	7811	BORL	N	Y end 2009	Ν	Y end 2009	Ν	Y end 2009	N	2009	Manual control currently; station undergoing modernization
Kunming	7820	KUNL									
S hang hai	7821	SHA2									
S an Fernando	7824	S FEL									
Mt. S tro mlo	7825	S TL3	N	Y; undefined	Y	-	Y	-	Ν	planned	
Helwan	7831	HLWL									
Riyadh	7832	RIYL									
Potsdam	7836	POTL									
S imo s a to	7838	SISL	Ν	Y-week	Ν	Y – wreek	Y	-	Ν	Y – soon	made when resources are available
Graz	7839	GRZL	Y	-	Y	-	Ν	Ν	Ν	needed	
He 15 tmo nc eu x	7840	HERL	Y	-	Y	-	Y	-	Ν		Power controlled by choice of laser and beam divergence
Potsdam	7841	PO T3	Ν	tbd	Ν	fod	Ν	tbd	Ν	tbd	starting mid-2009
Grasse	7845	G RS M	Ν	Y	Ν	Y	Ν	Y	Ν	Υ	Toimplement in "some months"
Ma te ra	7941	MATM	Ν	Y - 043009	Ν	Y-043009	Ν	Y-053109	Ν	Y - TDB	
We ttze ll	8834	WETL									
FTLRS			N	Y	N	Y	Ν	Y	Ν	Y	Toimplement in "some months"
TROS											
Stafford			Y	-	N	unknown	N	unknowm	N		DoD clearinghouse certifi cation; manual go/no-go possible;
		n -		Ú.		li –		1		, <u> </u>	

*: Y(es), N(o), or (M)anual

Leap Seconds and the CPF files

- Several CPF producers improperly set the leap second flag last December/January
- Stations could not track certain targets until predictions were corrected
- Is this a producer problem or a format problem?
 - i.e., Is station implementation a problem?
 - If it is a format issue, rewording/reworking CPF leap second flag has been suggested

Backup Slides...

Dear all,

the introduction of the leap second turned prediction computation into a disaster.

That's what was available to us (without being complete) on January 1st, 2009 during the day:

Cente	er Sat of se	Start day t befo	Leap s re a	ec flag Ifter Jar	Leap sec flag nuary 1, 00:00
нтѕ	all [Dec 30	0	0 N	o returns
ESA	ERS-1	Dec 31	1	0	OK on Jan 1
E	nvisat				
G	iove-A				
SGF	Ajisai	Jan 1	-	1 N	lo returns
COD	GNSS	Jan 1	-	0	OK on Jan 1
GFZ	Grace/	A/B Dec 3	61 0	C) Probably not OK
GFZ	Terras	arXDec 2	90	1	No returns
JAX	Oicets	Dec 30	0	1	OK on Jan 1
UTX	Icesat	Dec 20	0	0	unknown

HTS: When changing the leap second flag to 1 after Jan 1 00:00 everything was OK, Zimmerwald got returns on all tracked satellites

ESA: Obviously leap second applied after Jan 1, 00:00, so tracking and flag was OK. Flag 1 before Jan 1 is against format definition, I don't know how to interpret that

SGF: No returns on Ajisai (only one satellite tested).

GFZ: No leap second flag after Jan 1, 00:00 for Grace A/. Unsure (tracked Grace B for one minute, no returns)<200f>

GFZ: Leap sec flag was set after Jan 1, 00:00. However, no tracking success

UTX: Leap sec flag not set after Jan 1, 00:00. No tracking attempt done.

--> Only COD and JAX managed to correctly deal with the leap second.

The CPF format description clearly states what to do with the leap seconds:

- CPF files spanning the leap second epoch do not take into account the effect of the leap second but flag all subsequent epochs after the leap second epoch.

- CPF files starting after the leap second introduction take the leap second into account, flag set to zero for all epochs.

I ask the prediction centers to check their procedures while the iron is still hot.

Best regards and all the best for the new year to all of you. Werner Gurtner

20 April 2009

Dear all,

the introduction of the leap second turned prediction computation into a disaster.

That's what was available to us (without being complete) on January 1st, 2009 during the day:

Center Sat Start day Leap sec flag Leap sec flag of set before after January 1, 00:00							
HTS	all D) ec 30)	0 No returns			
ESA	ERS-1	Dec 31	1	0 OK on Jan 1			
E	nvisat						
G	iove-A						
SGF	Ajisai	Jan 1 -	-	1 No returns			
COD	GNSS	Jan 1	-	0 OK on Jan 1			
GFZ	GraceA	VB Dec 31	0	0 Probably not OK			
GFZ	Terrasa	arXDec 29	0	1 No returns			
JAX	Oicets	Dec 30	0	1 OK on Jan 1			
UTX	Icesat	Dec 20	0	0 unknown			

HTS: When changing the leap second flag to 1 after Jan 1 00:00 everything was OK, Zimmerwald got returns on all tracked satellites ESA: Obviously leap second applied after Jan 1, 00:00, so tracking and flag was OK. Flag 1 before Jan 1 is against format definition, I don't know how to interpret that

SGF: No returns on Ajisai (only one satellite tested).

GFZ: No leap second flag after Jan 1, 00:00 for Grace A/. Unsure (tracked Grace B for one minute, no returns)<200f>

GFZ: Leap sec flag was set after Jan 1, 00:00. However, no tracking success

UTX: Leap sec flag not set after Jan 1, 00:00. No tracking attempt done.

--> Only COD and JAX managed to correctly deal with the leap second.

The CPF format description clearly states what to do with the leap seconds:

- CPF files spanning the leap second epoch do not take into account the effect of the leap second but flag all subsequent epochs after the leap second epoch.

- CPF files starting after the leap second introduction take the leap second into account, flag set to zero for all epochs.

I ask the prediction centers to check their procedures while the iron is still hot.

Best regards and all the best for the new year to all of you. Werner Gurtner

From CPF Manual v1.01

4.Leap second

Application of leap seconds has always been a source of some confusion. In the new format, each ephemeris record contains a leap second value. In prediction files spanning the date of a leap second, those records after the leap second will have this flag set to the number of leap seconds (always '1' so far, but standards allow for -1). In other words, a 3-day file starting the day before a leap second is introduced will have the leap second flag set to '0' for the first 24 hour segment and '1' in the last 48 hours.

Even though the flag is non-zero, the leap second is not applied to the CPF times or positions. The station software needs to detect the leap second flag and handle the time argument to the interpolator appropriately.

Prediction files could still have the leap second flag set to non-zero for several days after the leap second has been introduced.

Once the leap second flag returns to '0' after introduction of the leap second, stations still running on the old time system have to take into account the leap second.

Normally, the leap second field will be set to '0'.

From Mark Davis:

here is the text of cpf format.... Its not practical to do paragraph2 ... that would envolve folks setting and unsetting in the sw - and every day in and around it would have to be specially handled.

2 options...

A) change the wording to be - the epoch of the records should always be UTC.

Define "sum of the leap second flag and epoch" should be UTC.

B) must write a special reader/ re-writer to convform to this procedure

Option A is the cleanest as all sites should have introduced it and their local clock is utc.

All that will happen is the epoch's will shift from 60 to 59 for one minute - but there is already a provision for variable records.

It also allows folks that don't put it in and flag the records so that when added things end up right.

In practice I can see where someone's pass is crossing the day and the fitting would be goof'd up on the processing side in either solution. 20 April 2009

I vote for A.

TRACKING RESTRICTIONS:

Several types of tracking restrictions have been required during some satellite missions. See http://ilrs.gsfc.nasa.gov/satellite_missions/restricted.hfortla.complete.discussion.

- 1) Elevation restrictions: Certain satellites have a risk of possible damage when ranged near the zenith. Therefore a mission may want to set an elevation (in degrees) above which a station may not range to the satellite.
- 2) Go/No-go restrictions. There are situations when on-board detectors on certain satellites are vulnerable to damaged by inter laser irradiation. These situations could indude safe hold position or maneuvers. A small ascii file is kept on a computic controlled by the satellite's mission which indudes various information and the literal "go" or "nogo" to indicate whether it is safe to range to the spacecraft. Stations access this file by ftp/very 5-15 minutes (as specifiled by the mission) and do not rar when the files set to "nogo" or when the internet connection prevents reading the file.
- 3) Segment restrictions: Certain satellites can allow ranging only during certain parts of the pass as seen from the ground. The missions provide station-dependent filles with lists of start and stop times for ranging during each pass.
- 4) Power limits: There are certain missions for which the laser transmit power must always be restricted to prevent detect damage. This requires setting laser power and beam divergence at the ranging station before and after each pass. While the above restrictions are controlled by software, this restriction is often controlled manually.

Many ILRS stations support some or all of these tracking restrictions. See xxx for the current list. You may wish to work through th ILRS with the stations to test their compliance with your restrictions or to encourage additional stations that are critical to your mission to implement them.

The following information gives the ILRS a better i dea of the mission's restrictions. Be aware that once predictions are provided to stations, there is no guarantee that forgotten restrictions can be immediately enforced.

1)	Cano	letector(s) or oth	er equipment on the s	spacecraft be damaged or	confused by	excessive irradiati	on, particula	rly in any one
	of	these	wavelengths	(532nm,	1064nm,	846nm,	or	423nm)

2) Are there times when the LRAs will not be accessible from the ground?

(lfso,go/

filles might be used to avoid ranging an LRA that is not accessible.)

_,	· · · · · · · · · · · · · · · · · · ·
	(If so, go/nogo or segmentation filles might be used to avoid ranging an LRA that is not accessible.)
3)	Is there a need for an altitude tracking restriction?What altitude (degrees)?
4)	 Is there a need for a go/no-go tracking restriction? For what reason(s)?
5)	Is there a need for a pass segmentation restriction? For what reason(s)?
6)	 Is there a need for a laser power restriction? Under what dircumstances?
7)	What power level (mW/cfi)? Is manual control of transmit power acceptable? For ILRS stations to range to satellites with restrictions, the following statement must be accepted. "The mission sponsor agrees not to make any daims against the station or station contractors or subcontractors, or their respective employees for any damage arising from these ranging activities, whether such damage is caused by negligence or otherwise, except in the case of willful misconduct." Please initial here to express agreement:
8)	Other comments on restrictions:

8	CRD Errata - Mozilla Firefox 📃 🗖 🗙	2						
<u>F</u> ile <u>E</u> dit <u>V</u> iew	v Hi <u>s</u> tory <u>B</u> ookmarks <u>T</u> ools <u>H</u> elp							
🦛 • 🗼 • 🥑	🛞 🏠 🎟 http://ilrs.gsfc.nasa.gov/products_formats_procedures/crd_errata.html 🔹 🕨 💽 linux color management 🔍							
🤜 Red Hat Netw	ork 🔁 Support 🔁 Shop 🔁 Products 🔁 Training							
🔹 az 🛛 M Gma	il 📔 Dilber 🛚 🕏 Where 🛛 🧭 Custo 🛛 💤 Scree 📑 Googl 🍽 British 🗋 🕒 Blue C 🏾 🗗 Intern 📄 Univer 🕅 Gmail 🛛 💥 Linux 📲 🛃 Camp 📲 Arring 🚺 Kring	•						
ILRS Home → Da	ta & Products -> CRD Errata	^						
ILRS Data	CRD Errata							
Centers	(as of 12-Mar-2009)							
Official ILRS Products	This page is used to accumlate errata/changes to the CRD documents and source code. It will be updated when needed.							
Official ILRS Products								
Description	Date: 12 March 2009							
Predictions	Version: 1.00							
Normal Point Data	Problem: Included							
Full-Rate Data	When data in converted from an old format to the CPD format, there will be							
Consolidated	fields (such as skew and kurtosis) that do not exist in the old format.							
Data (CRD)	with							
	There will often be cases where the value of a data record field is either unknown or not applicable. This is especially true when data is converted from							
Implementation Status	an old format to the CRD format, since there will be fields (such as skew and kurtosis) that do not exist in the old format.							
Data Corrections	Issue #: 2009-5							
Spaceraft ID	Date: 11 March 2009 Component: sample source code							
Table for Orbit Products	Version: 1.00							
Official Satellite	Routine: common_c/write_crd.c Problem: Satellites launched between 2000 and 2009 have 1 or 2 leading zeros in their ILRS ID. The write routine for the H3 record prints spaces instead of leading zeros.							
Names	Change: Replace							
Restricted								
Information	no mou mau mod mid mid", nedder.iirs_id, nedder.sic,							
Site Positions and Velocities	h3 %07d %4d %8d %1d %1d", header.ilrs_id, header.sic,							
Data Flow	Date: 11 March 2009							
FTP Archives	Component: sample source code							
	Routine: common_f/write_crd.f Problem: Satellites Jaunched between 2000 and 2009 have 1 or 2 leading zeros in their ILRS ID. The write routine for the H3 record prints spaces instead of leading zeros							
	Change: Replace							
	On line 64, replace							
	1000 FORMAT ("h3", 1x, a10, 1x, i8, 1x, i4, 1x, i8, 1x, i1, 1x, i1)							
	with							
	1000 FORMAT ("h3", 1x, a10, 1x, i8.7, 1x, i4, 1x, i8, 1x, i1, 1x, i1)	~						
Done		3						

CRD Format Status Stations providing CRD format

General remarks: check by crd_chk programme provided by Randy Ricklefs, npt check of EDC for meteorological data, etc., check of SOD, SIC, NORAD-No., npt window indicator, npt data integrity compliance, npt bin compliance (next week)

CRD npt-data delivered to EDC:

- Simeiz (1873): error in satellite record, solved
- Changchun (7237): error in meteorological, npt and calibration record, station informed, solved
- Zimmerwald (7810): error in npt record and others, station informed (older version?)
- Mount Stromlo (7825): error in npt record, sometimes in c2, station informed, start time > 86400 sec., in discussion, file name different from file naming convention of version v1.00

- Wettzell (8834): errors detected, solved, file naming not correct, station will be informed
- Concepcion (7405): CRD npt data since beginning of April 2009, error in station record, solved, (wavelength?)
- Herstmonceux (7840): O.K.
- Grasse (7845): O.K., Jason-2 only
- Matera (7941): O.K., some weeks, JASON-2 only

CRD fr-data delivered to EDC (T2L2):

- Simeiz (1873): npt window indicator correct?, station informed, seems to be O.K.
- Changchun (7237): O.K.
- Zimmerwald (7810): for JASON-2 and AJISAI only, gunzip → unexpected end of file, errors in H3, calibration and detector records (older version?)

- Mount Stromlo (7825): fr-data, npt data, and both together, file naming not correct (for merging important), error in range (crossing midnight) and elevation record
- Herstmonceux (7840): O.K., JASON-2 only
- Grasse (7845): O.K., JASON-2 only
- Matera (7941): O.K., some weeks only
- Wettzell (8834): muli-path files with H4, H8 records, now O.K., file naming not correct, station will be informed
- Grasse/FTLRS (7829): O.K., JASON-2 only

Additional remarks:

- The crd check will be continued, especially with respect to the correct SOD, SIC, Norad No., the npt window indicator, and npt generation violation
- The stations will be informed about incorrect crd format and/or incorrect parameters detected by the quality check

- Proposal: we should start with the daily crd data exchange next month before the transition to the hourly delivery
- Another proposal if requested by SLR stations: we would install a web page where the stations can put their crd data, and will receive the outputs of the crd check and the quality check before sending them to the data centre to avoid additional more work

Validating the new **CRD** data format

Magdalena Kuzmicz-Cieslak JCET/Univ. of Maryland Baltimore County

Erricos C. Pavlis

JCET/Univ. of Maryland Baltimore County, and NASA Goddard Space Flight Center

epavlis@UMBC.edu

- Tested data submitted by MLRS in CRD and ILRS NP format for the past few months
- We convert the CRD data back to a quasi-ILRS FR format, which
 - is directly readable by our analysis s/w (GEODYN)
 - All quantities were converted using the CRD precision
 - Met data are used without interpolation

CRD to ILRS FR (MERIT2)

h1	ND 0 2007 9 5 13	
h2	DOL 7080 24 19 4	
h3	AGEOS1 7603901 1155 8820 0 0	
h4	2007 5 11 23 53 33 2007 5 11 0 2 14 0 0 0 0 1 0 2	
c0	532.000 std ml1 mcp mt1	
c1	ml1 Nd-Yag 1064.00 10.00 -1.00 200.0 -1.00 1	
c2	mcp mcp 532.000 -1.00 3800.0 0.0 unknown -1.0 3.00 -1.0 35.0 none	
c3	mt1 TAC TAC MLRS_CMOS_TMRB_TD811 na 467300000.0	
60	td 5 2	
40	5013.4523810 0 std 47 46 -1.000 -831.7 0.0 59.4 0.118 -0.837 203.4 3 3	
20	5023.457 803.09 296.26 32. > MET RECORD for next 2 data	
11	5 <mark>023.4566669</mark> 73740 0.045600077128 std 2 120 22 <mark>92.5</mark> 1.503 -0.308 -47.9 1.	83
11	5 <mark>090.4854911</mark> 41153 0.044884749423 std 2 120 89 <mark>109.7</mark> 1.519 -0.342 17.3 7.	42
20	5338.192 803.09 296.06 32. > MET RECORD for 1 data	
11	5 <mark>338.1920594</mark> 06327 0.042824226301 std 2 120 99 <mark>85.0</mark> 1.588 -0.002 -60.8 8.	25
20	71.549 803.09 296.26 33. > MET RECORD for next 2 data	
11	71.549406949766 0.042137743997 std 2 120 47 84.2 1.551 -0.110 -73.2 3.	92
11	131.175048712525 0.041934327881 std 2 120 2 46.1 0.354 -2.750 -29.3 0.	17
50	d 94.1 1.616 0.060 22.9 0	
h8		
h9		_
ME	I from CRD file:	
76	0107131 <mark>860234566670</mark> 70802419 0 00456000771280000 <mark>092</mark> 53200 <mark>80312962032</mark> 0 0	0.
76	0107131 <mark>860904854911</mark> 70802419 0 00448847494230000 <mark>109</mark> 53200 <mark>80312962032</mark> 0 0	0.
76	0107131 <mark>863381920594</mark> 70802419 0 00428242263010000 <mark>085</mark> 53200 <mark>80312960032</mark> 0 0	0.
76	00107132 <mark>000715494070</mark> 70802419 0 00421377439970000 <mark>084</mark> 53200 <mark>80312962033</mark> 0 0	0.
76	00107132 <mark>001311750487</mark> 70802419 0 00419343278810000 <mark>046</mark> 53200 <mark>80312962033</mark> 0 0	0.

International Laser Ranging Service

GODDARD SPACE FLIGHT CENTER

FR from ILRS QL NP file below:

76039010815123363562398470802419 76039010815123429390708870802419 76039010815123628676498670802419 76039010815123649985661270802419 76039010815123848570794970802419 05166975787700000795320080092929042 050935529532 00000915320080092929042 048997729968 0001035320080092929042 04881811221900000825320080092929042 047429120877 00000755320080092929042 -00009270000000477001124011165210 -00009270000000477001224011165210 -00009270000000477000624011165210 -00009270000000477001224011165210 -00009270000000477002524011165210

MERIT from CRDX

FR-X from CRD NP file above:

LAGEOS 1 & 2 Examples

DF & P WG meeting, Vienna, Austria, April 20, 2009

E-1, Starlette, & Ajisai Examples

70802419 □ 米 ETA1 2009/01/19 04:38 - 2009/01/19 04:56 90802419 Mean Std. Dev. RMS 11.462 [mm] 70802419 7.037 [mm] 9.048 [mm] 30 9.096 [mm] 90802419 7.072 [mm] 11.522 [mm] 20 RESIDUALS [mm] 10 ⋇ 0 Ж -10 -20 © 2008 Copyright JCET, UMBC 04:38 04:44 04:40 04:42 04:46 04:48 04:50 04:5204:54 04:56 70802419 □ Ж STARL 2009/01/19 09:57 - 2009/01/19 10:03 90802419 Mean Std. Dev. RMS 0 -173.900 [mm] 174.114 [mm] 70802419 8.625 [mm] 90802419 8.617 [mm] 174.025 [mm] -173.811 [mm] -50 -100 RESIDUALS [mm] -150 Ж * * ¥ Ж -200 -250 -300 -350 © 2008 Copyright JCET, UMBC 09:58:00 09:57:00 09:59:00 10:00:00 10:01:00 10:02:00 10:03:00 TIME

GODDARD SPACE FLIGHT CENTER

International Laser Ranging Service

DF & PWG meeting, Vienna, Austria, April 20, 2009

- We successfully tested the new CRD format data from MLRS in GEODYN
- We tested only LAGEOS 1 & 2, ETALON 1 & 2, Starlette & Ajisai data only
- No major issues with the format, nearly identical results, $|\Delta v_R| \leq 0.5 mm$
- Questions to the WG:
 - Adopt rules of use, e.g. should met data be interpolated linearly or not?
 - Should other data types in CRD be examined? (FR, QL, engineering data)
- Procedure runs automatically once a week (Tuesday) for available sites

