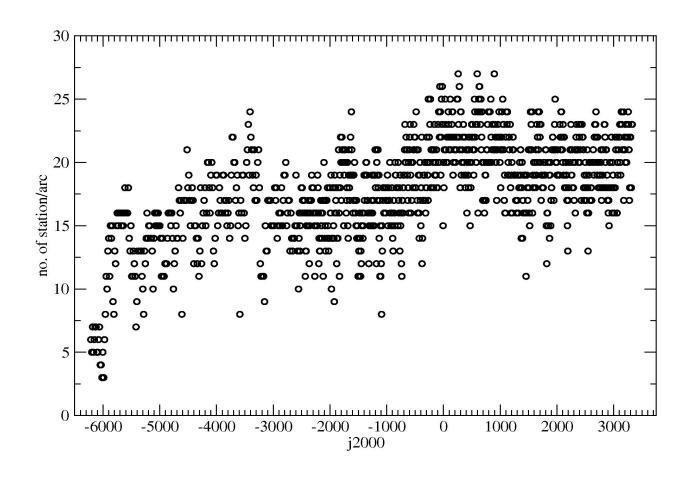
Report of DGFI/AC

Horst Müller

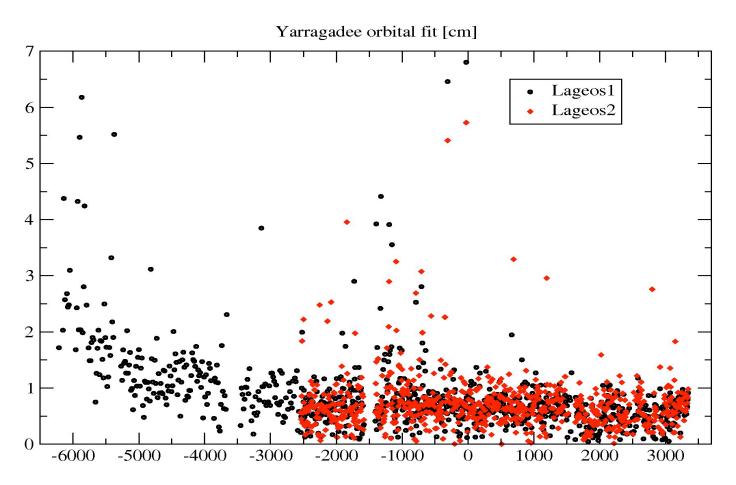
Deutsches Geodätisches Forschungsinstitut, München E-Mail: mueller@dgfi.badw.de


Reprocessing

Status

- 1993 until now, series v22 delivered on March 3, because v21 had only 5 EOP-values per week, first and last cut, and sinex files were incorrect, blocks were missing.
- 1983 1992 delivered v21 on Feb. 23, unclear 15 -> 7 day arcs therefore 2 arc more delivered on Feb. 26
- 1976 1982 partly processed but not delivered, results are poor
- all solution have problems with EOPs.

ILRS Analysis Working Group Meeting, Vienna, April 24, 2009 Number of station per week (resp. 15days before 1993)



ILRS Analysis Working Group Meeting, Vienna, April 24, 2009 r.m.s. orbital fit per week (resp. 15days before 1993)

ILRS Analysis Working Group Meeting, Vienna, April 24, 2009 Yarragadee r.m.s. orbital fit per week (resp. 15days before 1993)

Routine POS+EOP Solution

Status

- Weekly solutions from Lageos-1/2 and Etalon-1/2 data regularly delivered to CDDIS and EDC
- Daily solution not available, because of LOD problem
- Only daily bias reports

(http://www.dgfi.badw.de/dgfi/ILRS-AC/quality/index.html)

• Future Plans

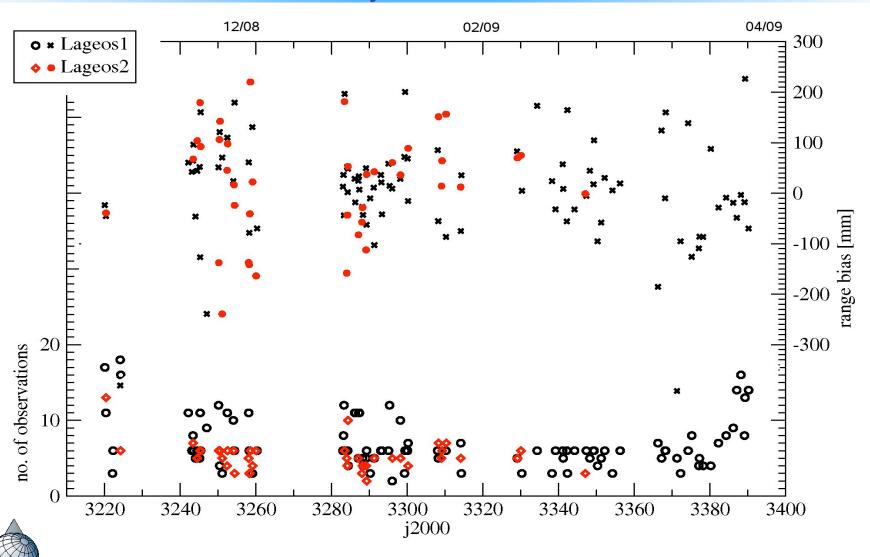
• New approach for LOD and EOP interpolation to 12:00 h UTC

Comments

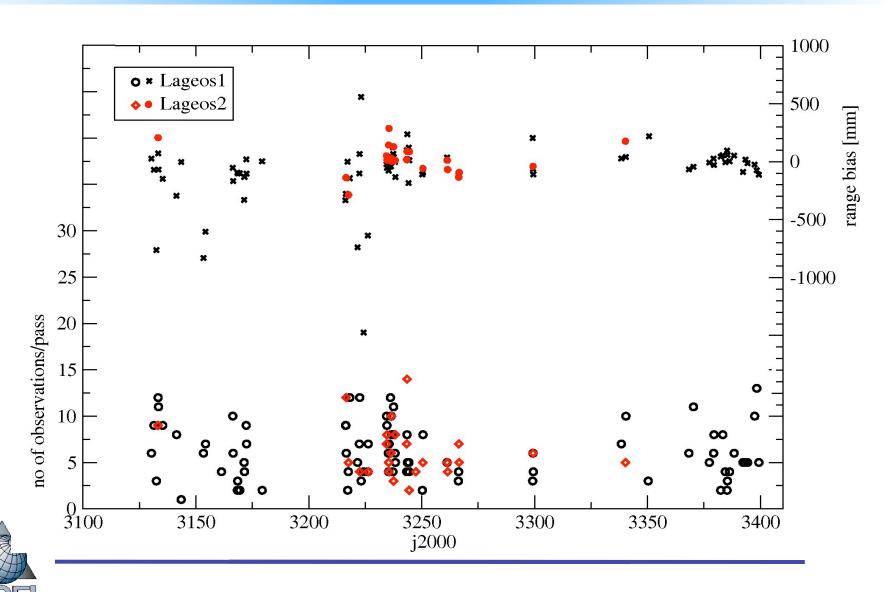
• We are working on the LOD problem, new programme version is ready, test are pending

SP3c Orbit Products

- Status
 - Weekly orbits for Lageos-1/2 and Etalon-1/2 delivered to CDDIS and EDC (ref. frame SLRF2005)
 - Orbits available from DGFI Web-pages
- Future Plans
 - Weekly orbits in DGFI loose solution frame to data centres
 - Orbits on Web-pages remain in SLRF2005 (itrf2008) frame
- Comments
 - Orbits from more centres needed



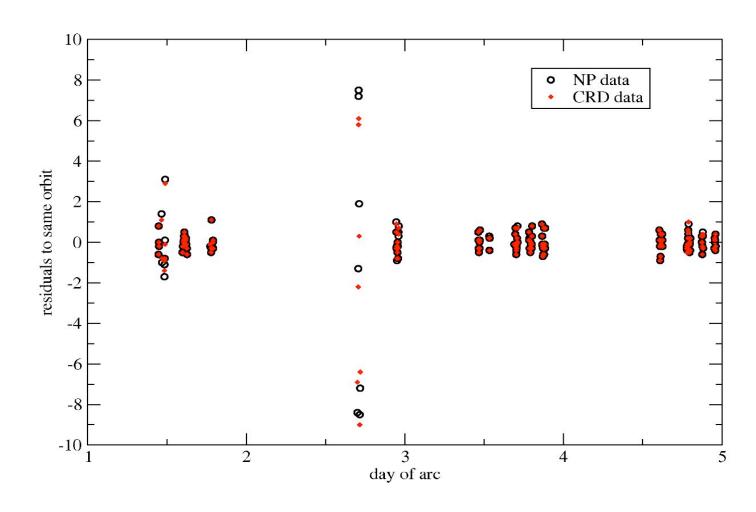
Station Qualification


- New stations
 - 1879 Altay Mountain, Russia, since Nov. 2008, needs better coord.
- Stations back in operation after longer period of inactivity, normally used in processing
 - 1824 Golosiiv, Kiev, Ukraine (01/01 10/05, 06/08 ..),
 - 7403 Arequipa, Peru, operational since June 2008, (better coord.?)
 - 7124 Tahiti, since June 2008, oper., good coordinates
 - 1868 Komsomolsk, Russia, oper. Since Oct. 2008, coordinates are bad
 - 7845 Grasse, France, since Nov. 2008, eccentr.?, coord.?
 - 7838 Simosato, Japan, since Dec.2008, good coord.
- Stations back in operation on a different spot on site
 - 7119 Haleakala, Hawaii, since Dec 2007, 7210 closed down in May 2004, 7119 operational, good coord. and ecc.
 - FTRLS on various sites (Burnie, Ajaccio,..)
 - other transportable systems (Japan, China)



ILRS Analysis Working Group Meeting, Vienna, April 24 2009 Altay Mountain

ILRS Analysis Working Group Meeting, Vienna, April 24 2009 Golosiiv



CRD-Format

- Status
 - implemented in DOGS-OC
 - use as one line Format (MERIT III, MERIT II ext)
- Test
 - some stations show very small discrepancies
 - others, like Simeiz, can not be compared, big difference
- Comments
 - a pure XML implementation would be better, but seems not to be feasible
 - Stations or data centres need format checker programmes

ILRS Analysis Working Group Meeting, Vienna, April 24, 2009 Comparison NP data converted CRD data: Residuals to same orbit

SLR-Discontinuities, Data-Handling and Data-Delete File

- Status
 - Old file seperated in 3 different files, sinex format
 - SLR_Discontinuities manage solution numbers
 - Including solution numbers from ITRF solution
 - SLR_Data_Handling recommendations of ILRS/AWG how to handle SLR data, biases, editing periods, ..
 - Updated regularly
 - Data-Delete, list of individual passes to be edited
 - Could include passes with high bias values or outliers(wrong day number
 - All analysis groups should contribute to the data delete file to ensure that everyone use, at least, the same passes for processing (ev. Test phase)
 - Files are available from DGFI ILRS pages. (http://www.dgfi.badw.de/dgfi/ILRS-AC/data_handling>
 - CDDIS and EDC?

Status of ILRSB

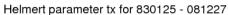
Rainer Kelm Deutsches Geodätisches Forschungsinstitut

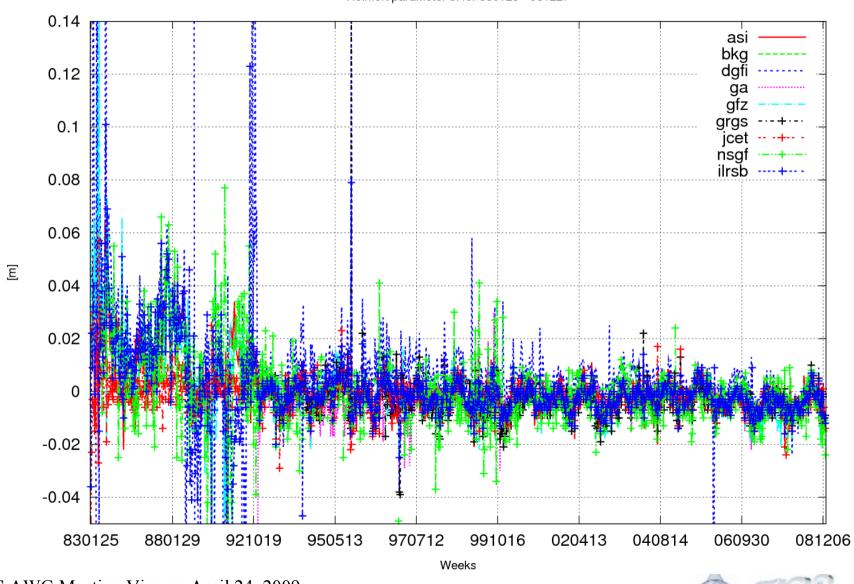
Weekly reprocessing v20

Remarks

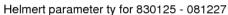
Time series plots

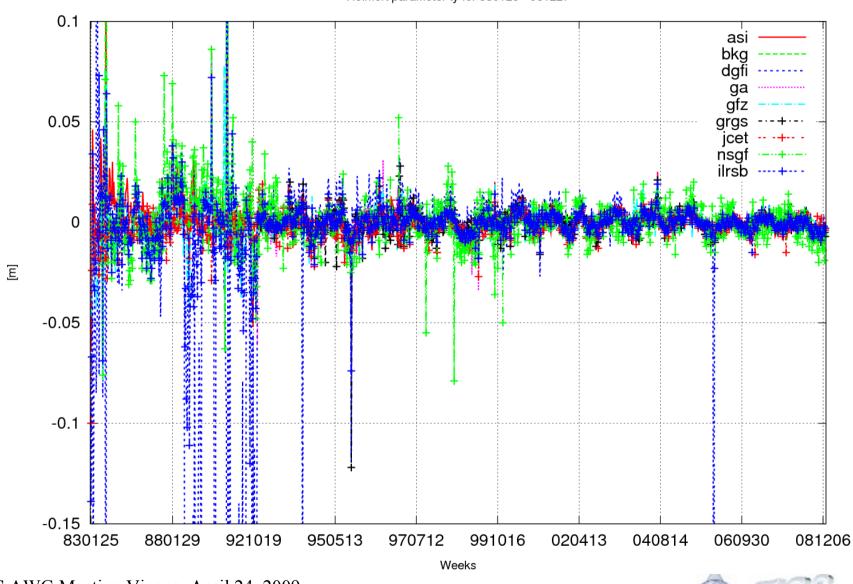
Recommendations

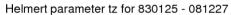


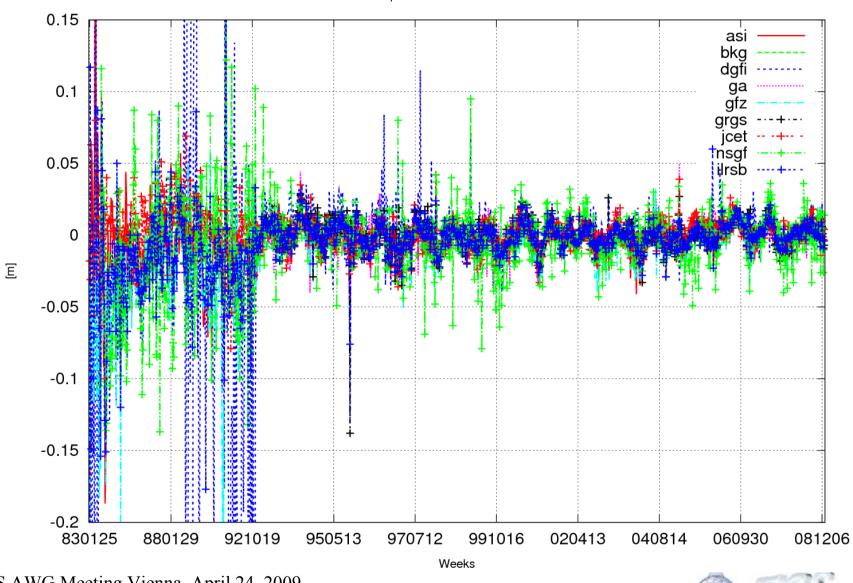

Remarks

- * preliminary results only:
 - => v20 for 1993 2008: multiple estimates (Z. Altamimi) eliminated trend analyis in summary files added (E. Pavlis)
 - => v21 for 1983 1992: jcet.v21 included
- * example of validation analysis by plots is presented here

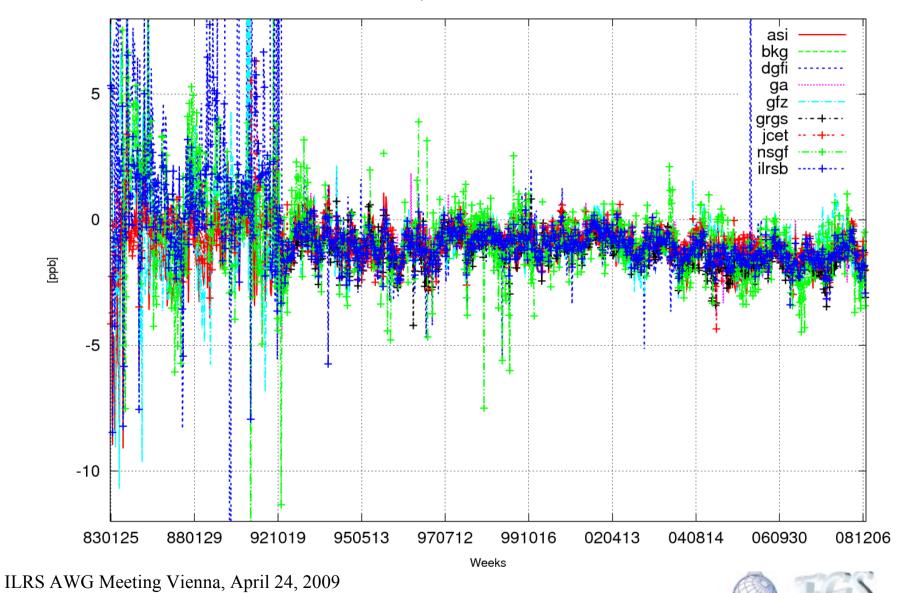


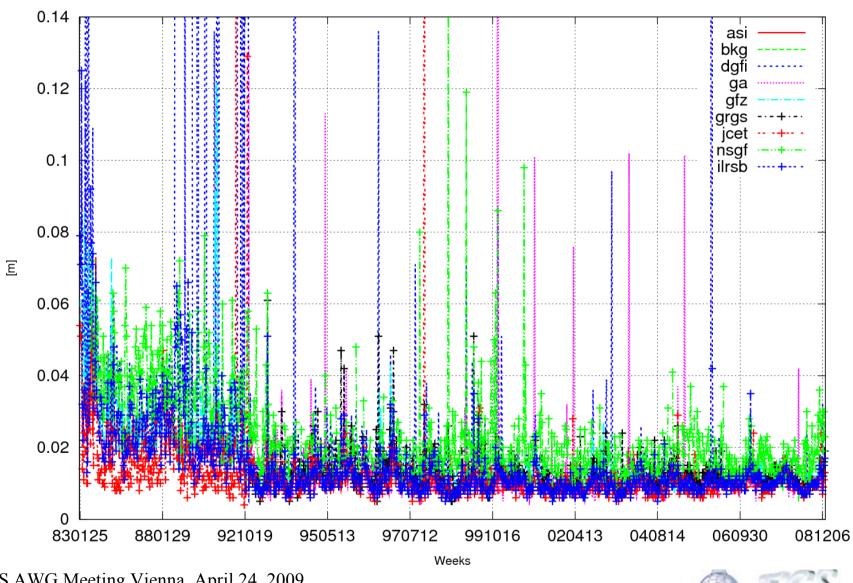

Weekly combination v20 (1)


Weekly combination v20 (2)

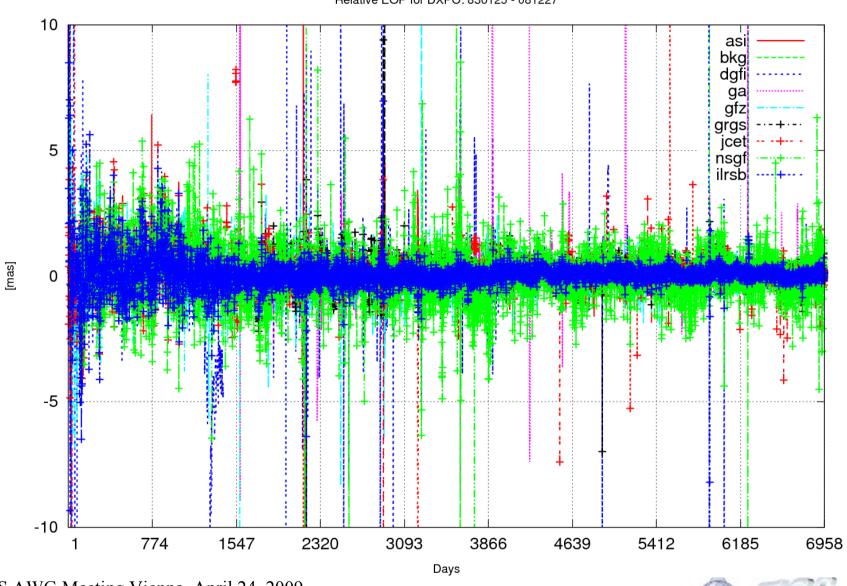


Weekly combination v20 (3)

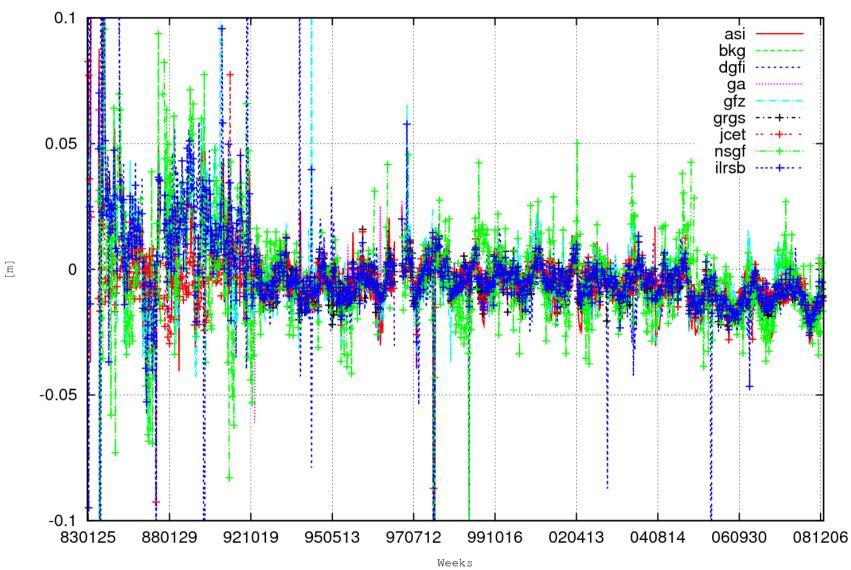



Weekly combination v20 (4)

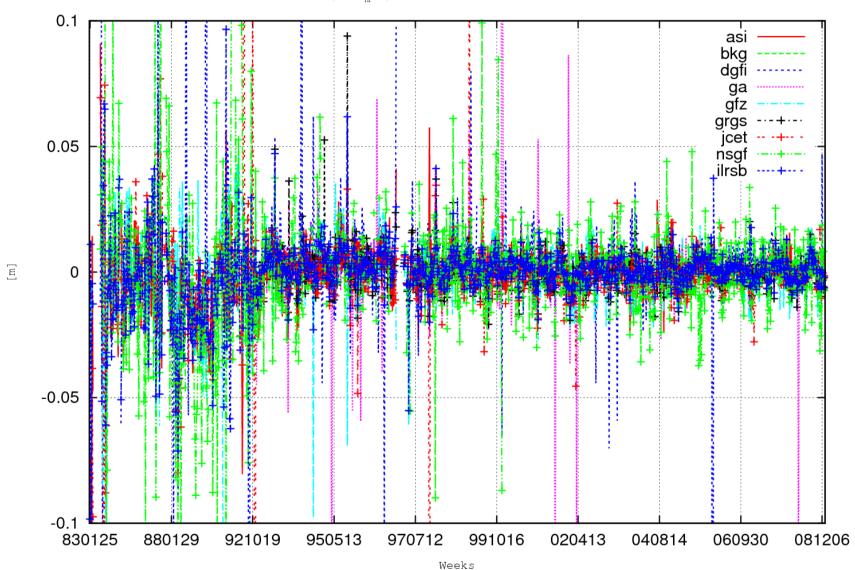
Helmert parameter sc for 830125 - 081227

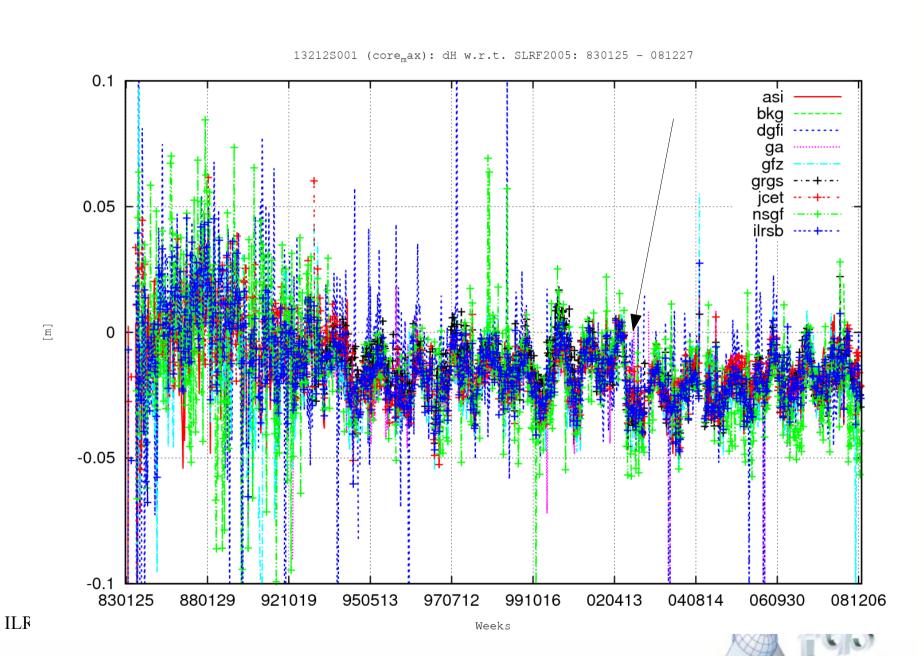

Weekly combination v20 (5)

Weekly combination v20 (6)


Relative EOP for DXPO: 830125 - 081227

Weekly combination v20 (7) Yarragadee


50107M001 (core_max): dH w.r.t. SLRF2005: 830125 - 081227


Weekly combination v20 (8) Yarragadee

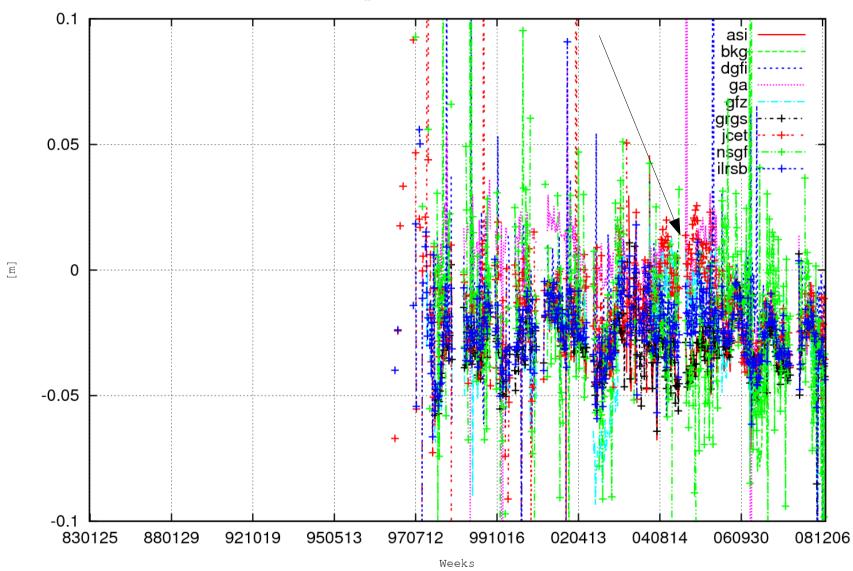
50107M001 (core_max): dX w.r.t. SLRF2005: 830125 - 081227



Weekly combination v20 (9) Herstmonceux

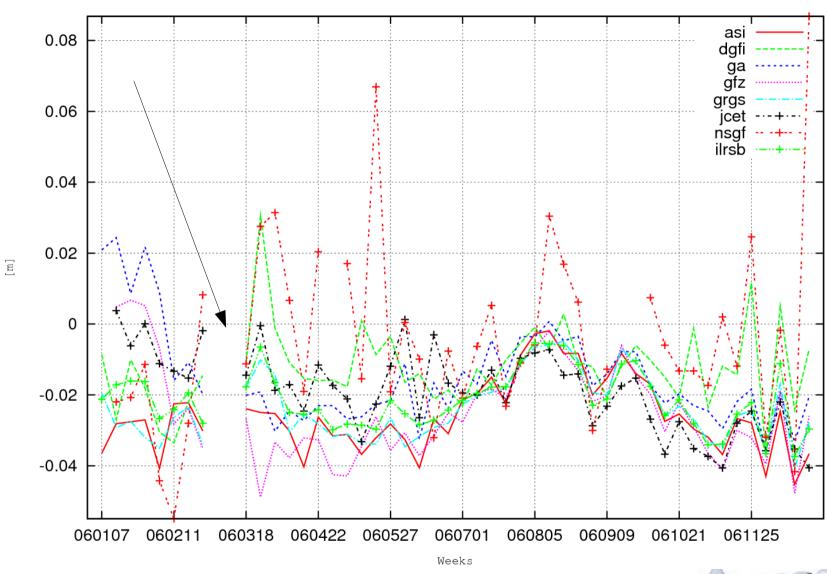
Weekly combination v20 (10) Herstmonceux

13212S001 (core_max): dH w.r.t. SLRF2005: 020105 - 021228

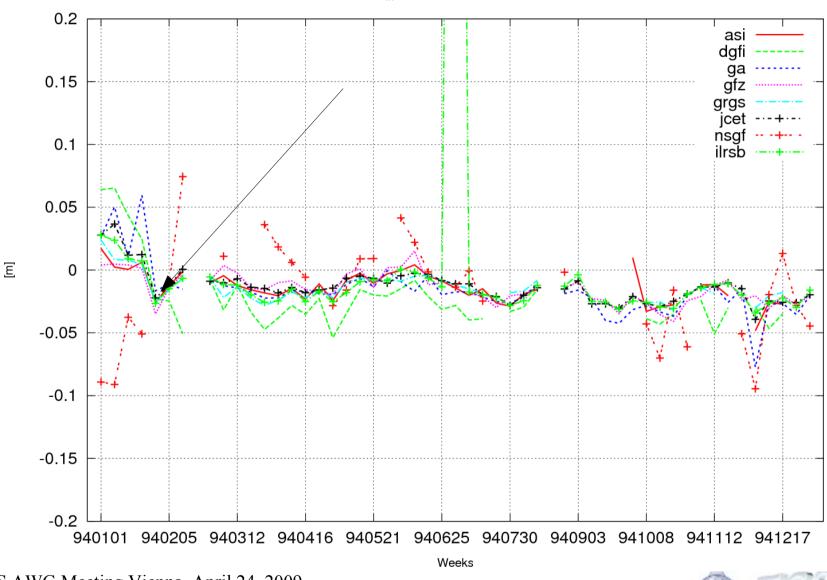


ILF

Weekly combination v20 (11) Zimmerwald


14001S007 (core_max): dH w.r.t. SLRF2005: 830125 - 081227

Weekly combination v20 (12) Zimmerwald


14001S007 (core_max): dH w.r.t. SLRF2005: 060107 - 061223

Weekly combination v20 (13) Haleakala

40445M001 (core_max): dH w.r.t. SLRF2005: 940101 - 941231

Recommendations

- * time for combination and validation by CC's: at least one month
- * stricter observance of AWG conventions by AC's (e.g. multiple est.)
- * communication between all CC's and all AC's during reprocessing time

ILRS Home >> ILRS Home

Links to Plug-ins

Publications

Satellite

Missions

Science &

Analysis

Search

Stations

Website Map

ILRS Web-site Developments

Peter Dunn and Mark Torrence

Satellite laser ranging (<u>brochure</u> and <u>animation</u>) uses lasers to measure ranges from ground stations to satellite borne retro-reflectors to the millimeter level. The primary mission of the ILRS as stated in the organization's Terms of Reference is "to support, through satellite and lunar laser tracking data and related products, geodetic and geophysical research activities."

Recent News

NOTICE: It is **important** that you **acknowledge** the ILRS in your papers and presentations that rely on SLR and results. Please **reference** the following citation:

Pearlman, M.R., Degnan, J.J., and Bosworth, J.M., "The International Laser Ranging Service", Advances in Space Research, Vol. 30, No. 2, pp. 135-143, July 2002, DOI:10.1016/S0273-1177(02)00277-6.

Furthermore, please include SLR as a keyword in your papers. The SLR community relies on these acknowledgements and references to strengthen its requests for continued support from its funding organizations. The Central Bureau asks that you provide a link to and/or bibliographic reference of any SLR/LLR-related papers or presentations.

If you have a suggestion or complaint about our service, please send an email to the <u>ILRS CB</u> Secretary.

Responsible Government Official: <u>Carey Noll</u> NASA's <u>Privacy Policy and Important Notices</u>

Send us your comments

Last modified date: Thursday, February 26, 2009 Maintained by: Carey Noll

http://ilrs.gsfc.nasa.gov/

Analysis Working Group Project Status 4/16/09 1:51 PM

ILRS Home Working Groups Analysis Working Group Analysis Working Group

AWG Activities and Meetings

Station Coordinates (SLRF2005)

AWG Pilot Projects

AWG Project Status

AWG Charter

AWG Members & Exploder

Call for Participation

ILRS AWG project status

click on the column heading to view the versions that have been submitted by each AC

Analysis Center	<u>Weekly</u> pos+eop	<u>Daily</u> pos+eop	SP3c Orbit	<u>historic</u> analysis	<u>reanalysis</u>
ilrsa	X	X			
ilrsb	Х	х			
asi	Х	х	Х	Х	Х
bkg	Х	х	Х		
dgfi	X		Х	X	Х
ga	X		Х		Х
gfz	X	X	Х	X	Х
grgs	X	X			
jcet	X	X	X	X	Х
nsgf	X	X		X	X

Responsible Government Official: Carey Noll NASA's Privacy Policy and Important Notices

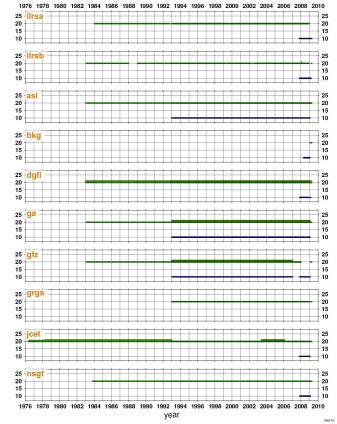
Send us your comments

Last modified date: Thursday, April 16, 2009 Author: Mark Torrence Maintained by: Carey Noll

AWG Activities and Meetings

Station Coordinates (SLRF2005)

AWG Pilot Projects

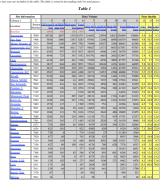

AWG Project Status

AWG Charter

AWG Members & Exploder

Call for Participation This plot shows the Resub solution version(s) that the analysis centers have put in the ILRS as a function of the solution's epoch. Click on the plot to get a larger display.

$current\ ILRS\ AC\ solutions;\ weekly\ reanalysis\ pos+eop\ versions$


Responsible Government Official: Carey Noll
NASA's Privacy Policy and Important Notices

Send us your comments

table and plots updated: Thursday, April 16, 2009 Last modified date: Thursday, April 16, 2009 Author: Mark Torrence Maintained by: <u>Carey Noll</u> SLR Global Performance Report Card 4/16/09 1:47 PM

SLR Global Performance Report Card age 1, 200 April 1, 2

Table 1

- Below on the described descriptions of our k volume in Table / 1.

 the first relation, L.I. is the state invaries mass.

 the sound and man, L.J. is the consumer water masser.

 the sound and man, L.J. is the consumer water for the mass of the consumer water for the mass of the consumer water for the mass of the plant and man, L.J. is the consumer of the mass of the plant and man, L.J. is the massler of the mass of the mass of the massler of the ma

Table I L

at entry in each table is for the performance baseline and.

Table 2

SLR Global Performance Report Card 4/23/09 10:33 AM

Table 1 L

Site Infor	mation	Data Information											
Column L1	L.2	L3	L4	L5	L6								
Location	Station Number	num nights tracking last 12 mon	num npt last 12 mon	num npts last 3 mon	ave npt rms last 3 mon								
McDonald	7080	45	77	25	63.8								

Below are the detailed descriptions of each column in Table 2:

- the first column is the station location name.
 the second column is the nonument marker number.
 the second column is the monument marker number.
 following columns are in grouped by analysis center with four columns for each
 itself of the first AC column is the average LAGEOS normal point RMS, in millimeters, during the last quarter
 the second AC column is the measure of phost tree this satisfility, in millimeters, during the last quarter. The short term stability is computed as the attacked deviation whout the mean of the pasts by pasts range biases (maintam number of pasts in quarter is 10). stability is the standard deviation of the muntily range him estimates. A nation must here neithed LAGEOS (1) as and task of the last II number is of the standard deviation of the muntily range him estimates. A nation must here neithed LAGEOS (1) as and task of the last II number is order to compute this meric.
 the fourth AC column is the percentage of LAGEOS normal points that were accepted in the analysis.

The first entry in each table is for the performance baseline goal.

Additional Notes: Blanks in any columns implies either that there was no data or that there was insufficient data. Only stations that have supplied data within the last year are included in the table. The table is sorted in descending order by total data volume.

Table 2

						His	otsuba	schi Ili	niv.		JC											
Site Informat	tion	DGFI Orbital Analysis					rbital.			O	rbital		sis	MCC	Orbit	tal An	alysis	SHAO Orbital Analysis				
Station Location	Station Number	LAG NP RMS (mm)	short term (mm)	long term (mm)	good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	good LAG. NP	
Baseline		10.0	20.0	20.0	95	10.0	20.0	20.0	95	10.0	20.0	20.0	95	10.0	20.0	20.0	95	10.0	20.0	20.0	95	
Yarragadee	7090	3.2	27.1	3.7	99.6	2.0	8.7	1.2	100.0	3.2	14.9	3.6	98.7	0.7	6.7	4.7	98.5	1.7	10.2	2.2	95.3	
San_Juan	7406	5.7	33.2	7.5	99.4	3.0	23.4	8.6	99.2	4.6	18.5	3.3	95.1	0.8	11.4	5.1	97.9	3.4	24.8	10.1	95.4	
Mount_Stromlo_2	7825	2.7	25.0	5.0	99.9	2.2	10.9	2.2	100.0	3.1	13.9	4.5	99.1	0.6	6.0	4.8	98.3	2.2	15.7	3.8	96.4	
Zimmerwald_532	7810	3.9	18.4	11.2	99.1	1.5	9.6	8.1	100.0	3.5	14.2	8.5	99.6	0.7	3.2	12.9	98.8	1.6	9.4	3.6	96.6	
Wettzell	8834	3.2	28.5	5.0	100.0	2.8	12.0	3.5	100.0	3.3	16.1	4.1	96.1	1.5	8.9	2.5	98.4	1.9	18.7	5.2	96.5	
Greenbelt	7105	4.0	22.3	3.7	99.9	2.1	9.9	3.4	99.9	3.4	10.2	2.9	98.5	0.6	9.7	6.3	98.6	2.3	11.5	2.0	95.2	
Graz	7839	2.3	19.0	5.3	99.8	1.2	7.2	2.4	100.0	1.6	10.4	5.0	100.0	0.4	3.3	4.7	99.2	1.0	9.4	4.4	95.3	
Herstmonceux	7840	3.0	23.2	4.6	100.0	1.7	7.5	1.8	100.0	3.1	12.1	4.7	100.0	0.9	7.4	3.8	99.1	1.7	9.3	2.4	95.8	
Changchun	7237	5.1	36.0	13.1	100.0	5.1	16.1	5.2	100.0	4.5	19.5	6.6	97.2	1.8	10.3	7.3	97.9	3.0	24.6	9.9	95.6	
Concepcion_847	7405	3.7	31.7	6.0	100.0	1.8	17.0	4.6	100.0	4.2	13.2	8.1	99.1	3.5	22.6	3.3	100.0					
Riyadh	7832	3.6	33.5	7.9	100.0	2.6	13.1	4.4	100.0	2.8	17.9	8.6	100.0	1.5	13.1	7.6	97.2	2.7	32.4	10.4	97.3	
San_Fernando	7824	4.0	30.9	11.7	100.0	4.5	17.5	8.8	100.0	4.3	27.3	6.2	93.9					4.4	25.5	13.6	96.7	
Potsdam_3	7841	3.8	20.6	10.5	99.9	2.3	8.3	3.5	100.0	3.0	13.2	6.6	97.4	1.3	6.7	4.4	96.2					
Haleakala	7119	3.2	30.9	8.0	99.7	2.0	11.0	4.8	99.7	3.5	16.1	4.6	99.0	0.8	12.6	9.7	99.7	2.6	31.3	6.1	98.4	
Monument_Peak	7110	2.9	30.5	7.5	99.7	2.3	8.9	4.9	99.8	3.1	19.5	7.5	98.1	1.2	11.1	4.3	97.5	2.1	9.4	5.0	96.0	
Katzively	1893	8.6	41.2	26.0	100.0	8.1	20.5	14.7	100.0					1.5	28.1	16.3	95.9	5.0	28.9	17.0	95.7	
Shanghai_2	7821																	6.2	16.5	11.5	91.8	
Beijing	7249	9.5	37.5	14.0	96.0	7.3	22.3	17.2	94.1	5.5	18.0	14.0	76.4	5.1	14.2	27.2	92.5	7.9	25.2	11.3	91.0	
McDonald	7080	4.4	25.4	5.0	99.9	2.8	9.3	3.3	100.0	3.9	16.0	5.2	99.6	1.2	6.1	5.1	96.7	2.6	12.7	4.3	94.5	
Hartebeesthoek	7501	2.8	25.9	9.0	99.7	2.0	12.2	4.7	100.0	3.6	13.0	7.9	100.0	0.5	8.5	8.1	97.5	1.4	24.5	17.1	97.4	
Simeiz	1873	30.3	57.2	27.8	61.5	103.9	50.1	15.5	100.0	2.8	23.4	11.9	18.7									
Papeete	7124	3.5	18.5	6.2	100.0	1.9	13.0	4.2	100.0	3.1	11.4	3.1	100.0	0.2	5.2	3.9	100.0	5.4	19.6	9.9	97.6	
Tanegashima	7358	3.7	31.7	12.5	100.0	2.0	24.7	13.8	100.0	4.2	31.1	29.2	98.6									
Simosato	7838	7.7	30.0		99.7	5.1	17.1		99.3	6.1	15.9		91.5	2.3	8.9		97.8	5.7	21.3		94.9	
Koganei	7308	5.4	27.4	9.4	100.0	4.0	15.2	7.4	99.8	5.4	15.9	10.5	96.3	1.4	13.3	10.2	98.3	3.5	17.5	8.8	95.3	
Riga	1884	10.2	28.7	29.9	100.0	5.4	21.3	23.9	99.6	5.1	17.9	19.6	73.3	5.0	26.0	23.0	90.3	9.5	15.2	22.3	80.6	
Grasse_LLR	7845	3.4	24.5		100.0	2.3	11.3		100.0	3.9	19.1		100.0	0.3	1.2		98.7	1.7	8.1		94.6	

Responsible Government Official: <u>Carey Noll</u> NASA's <u>Privacy Policy and Important Notices</u>

Last modified date: Thursday, April 16, 2009 Author: <u>Mark Torrence</u> Maintained by: <u>Carey Noll</u>

4/23/09 10:33 AM SLR Global Performance Report Card

ILRS Home 🕪 Stations 🗠 Site Information 🕪 Global Report Cards 🕪 SLR Global Performance Report Card

SLR Global Performance Report Card year quarter 2009 1 April 1, 2008 through March 31, 2009 2008 1 2 3 4 The performance report card is divided into three tables for readability. Table 1 contains performance parameters based on data volume, on-site processing statistics and operational compliance issues. Table 11 contains information about Lunar Laser Ranging during the past year. Table 2 contains performance parameters based on various Ananlysis Cente's rapid orbital analysis results. 2006 1 2 3 4 Below are the detailed descriptions of each column in Table 1 plots of the columns are linked in this description and in Table 1: Column 1 is the Station location name. Column 2 is the monument marker number. Column 3 is the monument marker number. Column 3 is the monument marker number. Column 4 is the LEO pass total during the past 12 months. Column 5 is the LEO pass total during the past 12 months. Column 6 is the LEO pass total during the past 12 months. Column 6 is the past set sould during the past 12 months. Column 6 is the past set and (i.e., all satellites) during the past 12 months. Column 6 is the LEO PRO total during the past 12 months. Column 15 is the Past Station 12 months. Column 15 is the LEO PRO total during the past 12 months. Column 15 is the LEO PRO total during the past 12 months. Column 15 is the LEO PRO total during the past 12 months. Column 15 is the total past past 12 months. Column 15 is the total past past 12 months. Column 16 is the total past past past 12 months. Column 16 is the total past past past past 12 months. Column 16 is the overage single-shot collibration RAS, in millimeter, during the last quarter. Column 14 is the overage single-shot Collibration RAS, in millimeters, during the last quarter. 2005 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 2004 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 2003 1 2 3 4 2002 1 2 3 4 2001 1 2 3 4

2000 1 2 3 4 1999 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 1998 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 1998 <u>3</u> <u>4</u>

The first entry in each table is for the performance baseline goal. Note: There are no baseline goals for NP data quantities, single shot RMS's.

Additional Notes: Blanks in any columns implies either that there was no data or that there was insufficient data. Only stations that have supplied data within the last year are included in the table. The table is sorted in descending order by total passes. Table 1

					1 44	<i>n</i> e 1															
Site Informa	tion				Ι	ata Volu	ne				Dat	ta Qua	lity					_			
Column 1	2	3	4	5	6	7	8	9	10	11	12	13	14	L	ΑG	3 E	:O	2	L	.EC)
Location	Station Number	LEO pass Tot	LAGEOS pass Tot	High pass Tot	Total passes	LEO NP	LAGEOS			Minutes of		Star	LAG	-	_		_	٠.	Ξ		
Baseline		1000	400	100	1500	Total	NP Total	Total	NP	Data	KMS	RMS	RMS				7	-) _	١
Yarragadee	7090	10720	2097	1554	14371	216492	25994	14013	256499	178604	4.9	8.6	9.3			-	≺		4	2	,
San_Juan	7406	5856	1060	1367	8283	97481	12160	8898	118539	96605	9.8	10.5	14.9				J		Z		_
Mount_Stromlo_2	7825	5999	1109	394	7502	74496	10927	3240	88663	62368	4.0	3.0	4.9								
Zimmerwald_532	7810	5162	984	1011	7157	96027	13171	8653	117851	93767	6.5	9.0	11.8								
Wettzell	8834	4395	957	319	5671	48183	6946	1441	56570	36944	3.7	12.4	18.6					- 1			
Greenbelt	7105	4444	725	383	5552	101792	8603	2602	112997	55718	5.4	9.2	10.4					- 1			
Graz	7839	4126	607	463	5196	77495	6458	3802	87755	51540	2.1	3.7	5.2					- 1			
Herstmonceux	7840	3817	844	410	5071	55813	10636	1654	68103	44099	5.6	10.3	13.7					- 1			
Changchun	7237	3617	595	359	4571	36560	3782	1453	41795	25233	7.1	10.7	11.3					- 1			
Concepcion 847	7405	2567	923	618	4108	32171	11057	4780	48008	57332	5.7	15.5	19.3								
Riyadh	7832	2339	626	268	3233	26716	5194	1446	33356	25889	8.6	11.6	15.0					- 1			
Matera_MLRO	7941	2336	660	63	3059	29963	7455	520	37938	27811				J				- 1			
San_Fernando	7824	2547	416	64	3027	37764	3058	261	41083	19359	6.3	10.3	15.1	▾				- 1			
Potsdam_3	7841	1909	326	39	2274	37128	3766	298	41192	18475	10.7	12.6	16.7	•							
Haleakala	7119	1765	391		2156	30159	4519		34678	17612	5.2	10.1	9.8								
Monument_Peak	7110	1619	321	207	2147	28121	3630	1716	33467	23332	5.3	15.9	16.3								
Katzively	1893	1189	320	227	1736	18178	2610	1432	22220	17853	36.4	44.8	39.3					- 1			
Arequipa	7403	1572	137		1709	17953	753		18706	6910	6.5	7.3	4.3					- 1			
Shanghai_2	7821	1447	166	29	1642	16997	1591	162	18750	9410	11.9	14.5	18.8					- 1			
Beijing	7249	1264	313	59	1636	15761	2642	406	18809	12455	8.1	22.3	14.1					T	,		
McDonald	7080	1026	365	218	1609	11110	3712	919	15741	15357	11.3	11.6	12.6					▼			
Hartebeesthoek	7501	1201	265	17	1483	14229	2028	93	16350	8960	5.0	10.0	11.4								
Simeiz	1873	755	280	61	1096	9479	2478	594	12551	10269		47.6	56.4								
Kiev	1824	821	101		922	8500	629		9129	3920	7.1	20.0	22.9								
Ajaccio	7848	770	4		774	11162	27		11189	3564											
Kunming	7820	677	68		745	8528	425		8953	3848	17.2	18.9	23.0								
Papeete	7124	506	144	18	668	8859	2092	100	11051	7273	4.0	10.0	9.7								
Tanegashima	7358	427	89	100	616	6176	780	620	7576	6535	4.9	5.5	6.6								
Simosato	7838	434	143		577	8224	1919		10143	6651	7.6	9.6	14.2								
Koganei	7308	360	101	85	546	4754	893	601	6248	6421	9.6	13.1	15.2								
Riga	1884	393	78	6	477	8575	1212	42	9829	4834	7.6	14.6	14.2								
Grasse_LLR	7845	129	102	44	275	3085	1106	271	4462	4476	6.3	14.8	13.6								
Lada	1031	171	20		107	2650	105		20.42	1001	14.0	60.4	70.0								

Below are the detailed descriptions of each column in Table 1 L:

7811 129

the first column, L1, is the station location name.
 the second column, L2, is the monument marker number.
 the third column, L3, is the munder of nights during the past 12 months in which there were Lunar ranging measurements
 the fourth column, L4, is the number of Junar Luser Ranging normal points during the past 12 months
 the fifth column, L5, is the number of Junar Luser Ranging normal points during the past 3 months
 the sixth column, L6, is the average Lunar Luser Ranging normal points rms 3 months in mm

193 1534

69

641

2175

998

1790 17.1

		Data Quantity									a Qu		Operational Compliance					
column 1	2	3	4	5	6	7	8	9	10	11	12	13	14		16	17	18	<u> </u>
	1 1													% of				П
			LAG				Lageos			SS			Long			Format		ı
Location	Station		Pass								(mm)					Revision Number		
Baseline			400				1 otai	1 otai	1 otai	(mm)	(mm)	(mm)				Number 1		
Monument	1	1000	400	100	1300			Н				20	20	,,,	- 1	-	yes	+
Peak	7110	5579	1525	896	8000	86.079	18.344	8029	112.452	8	2	11	5	98	1	1	yes	,
Yarragadee	7090	3709	1052	1063	5824	58,238	12.562	8797	79,597	10	2	11	5	97	- 1	- 1	yes	
Mt. Stromlo	7849	3370	1185	978	5533	35,394	11.259	4955	51,608	- 11	2	15	6	98	- 1	- 1	ves	-
Herstmonceu	x 7840	3085	984	751	4820	37,704	12,364	3553	53,621	18	3	9	7	100	- 1	1	yes	;
Greenbelt	7105	3347	833	375	4555	48,031	9266	2418	59,715	11	2	9	6	99	- 1	1	yes	-
Graz	7839	2544	647	1091	4282	54,342	10,094	7626	72,062	9	2	8	8	99	- 1	1	yes	1
Wettzell	8834	1835	702	735	3272	29,901	7144	4089	41,134	28	6	18	10	99	- 1	1	yes	
Grasse	7835	2346	406	3	2755	46,372	4924	44	51,340	12	2	11	13	99	- 1	1	yes	3
McDonald	7080	1755	497	396	2648	23,558	4855	1615	30,028	14	3	11	10	99	- 1	- 1	yes	
Changchun	7237	1584	463	466	2513	22,281	4621	2755	29,657	15	7	20	13	94	- 1	1	yes	
San Fernando	7824	1916	428	0	2344	28,056	3422	0	31,478	54	11	30	50	84	- 1	- 1	yes	3
Potsdam	7836	1635	330	103	2068	21,966	3029	480	25,475	16	5	21	15	99	- 1	1	yes	3
Zimmerwald	7810	1253	418	314	1985	17,937	5463	2446	25,846	45	11	11	10	98	- 1	1	yes	3
Matera	7939	1216	449	0	1665	20,949	5470	0	26,419	145	29	38	9	54	- 1	1	yes	
Arequipa	7403	1319	209	0	1528	16,024	1876	0	17,900	7	3	20	15	96	- 1	1	yes	3
Shanghai	7837	841	245			12,014		2261	16,747	18	7	25	14	94	- 1	1	yes	5
Helwan	7831		56			15,214		0						19	- 1	0	yes	
Tahiti	7124	827	235	38	1100	10,803	2317	293	13,413							1	yes	4
Borowiec	7811	719		42		11,662	3443	161	15,266	33	8	18	16		- 1	1	yes	s
Beijing	7249	694	187	96	977	9225	1443	493	11,161	29	7	44		70		1	yes	.[
Koganei	7328	587	242	73		6849			9566	12	4	19	12			1	yes	
Riga	1884	581	222	0		12,587	3070	0		25	7	47	18			1	yes	.[
Grasse (LLR)		0			767	0		3873	7956	26	4	12	12			1	yes	
Simosato		572		25	717	9458				25	8	21		89		0		١
Komsomolsk	1868	442			673	5092	725		6191		19	21		74	5	0	nc	١
Haleakala	7210	403	130		671	5300		1319	7879								yes	4
Tateyama	7339	427	152	69	648	4922	1829		7056	14		14		100	- 1	- 1	yes	
Maidanak 2	1864	214			645	2682	1565		5007		8	19	17	93	2	0	nc	1
Kashima	7335	409		54	594	5289			6798	12	3	15		98	- 1	1	yes	
Metsahovi2	7806	480	71	15	566	8377	862	52	9291	33	8	25		95	1	1	yes	١

LAGEOS

4/23/09 10:33 AM SLR Global Performance Report Card

ILRS Home 🕪 Stations 🗠 Site Information 🕪 Global Report Cards 🕪 SLR Global Performance Report Card

SLR Global Performance Report Card year quarter 2009 1 April 1, 2008 through March 31, 2009 2008 1 2 3 4 The performance report card is divided into three tables for readability. Table 1 contains performance parameters based on data volume, on-site processing statistics and operational compliance issues. Table 11 contains information about Lunar Laser Ranging during the past year. Table 2 contains performance parameters based on various Ananlysis Cente's rapid orbital analysis results. 2006 1 2 3 4 Below are the detailed descriptions of each column in Table 1 plots of the columns are linked in this description and in Table 1: Column 1 is the Station location name. Column 2 is the monument marker number. Column 3 is the monument marker number. Column 3 is the monument marker number. Column 4 is the LEO pass total during the past 12 months. Column 5 is the LEO pass total during the past 12 months. Column 6 is the LEO pass total during the past 12 months. Column 6 is the past set sould during the past 12 months. Column 6 is the past set and (i.e., all satellites) during the past 12 months. Column 6 is the LEO PRO total during the past 12 months. Column 15 is the Past Station 12 months. Column 15 is the LEO PRO total during the past 12 months. Column 15 is the LEO PRO total during the past 12 months. Column 15 is the LEO PRO total during the past 12 months. Column 15 is the total past past 12 months. Column 15 is the total past past 12 months. Column 16 is the total past past past 12 months. Column 16 is the total past past past past 12 months. Column 16 is the overage single-shot collibration RAS, in millimeter, during the last quarter. Column 14 is the overage single-shot Collibration RAS, in millimeters, during the last quarter. 2005 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 2004 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 2003 1 2 3 4 2002 1 2 3 4 2001 1 2 3 4

2000 1 2 3 4 1999 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 1998 <u>1</u> <u>2</u> <u>3</u> <u>4</u> 1998 <u>3</u> <u>4</u>

The first entry in each table is for the performance baseline goal. Note: There are no baseline goals for NP data quantities, single shot RMS's.

Additional Notes: Blanks in any columns implies either that there was no data or that there was insufficient data. Only stations that have supplied data within the last year are included in the table. The table is sorted in descending order by total passes. Table 1

					1 44	<i>n</i> e 1															
Site Informa	tion				Ι	ata Volu	ne				Dat	ta Qua	lity					_			
Column 1	2	3	4	5	6	7	8	9	10	11	12	13	14	L	ΑG	3 E	:O	2	L	.EC)
Location	Station Number	LEO pass Tot	LAGEOS pass Tot	High pass Tot	Total passes	LEO NP	LAGEOS			Minutes of		Star	LAG	-	_		_	٠.	Ξ		
Baseline		1000	400	100	1500	Total	NP Total	Total	NP	Data	KMS	RMS	RMS				7	-) _	١
Yarragadee	7090	10720	2097	1554	14371	216492	25994	14013	256499	178604	4.9	8.6	9.3			-	≺		4	2	,
San_Juan	7406	5856	1060	1367	8283	97481	12160	8898	118539	96605	9.8	10.5	14.9				J		Z		_
Mount_Stromlo_2	7825	5999	1109	394	7502	74496	10927	3240	88663	62368	4.0	3.0	4.9								
Zimmerwald_532	7810	5162	984	1011	7157	96027	13171	8653	117851	93767	6.5	9.0	11.8								
Wettzell	8834	4395	957	319	5671	48183	6946	1441	56570	36944	3.7	12.4	18.6					- 1			
Greenbelt	7105	4444	725	383	5552	101792	8603	2602	112997	55718	5.4	9.2	10.4					- 1			
Graz	7839	4126	607	463	5196	77495	6458	3802	87755	51540	2.1	3.7	5.2					- 1			
Herstmonceux	7840	3817	844	410	5071	55813	10636	1654	68103	44099	5.6	10.3	13.7					- 1			
Changchun	7237	3617	595	359	4571	36560	3782	1453	41795	25233	7.1	10.7	11.3					- 1			
Concepcion 847	7405	2567	923	618	4108	32171	11057	4780	48008	57332	5.7	15.5	19.3								
Riyadh	7832	2339	626	268	3233	26716	5194	1446	33356	25889	8.6	11.6	15.0					- 1			
Matera_MLRO	7941	2336	660	63	3059	29963	7455	520	37938	27811				J				- 1			
San_Fernando	7824	2547	416	64	3027	37764	3058	261	41083	19359	6.3	10.3	15.1	▾				- 1			
Potsdam_3	7841	1909	326	39	2274	37128	3766	298	41192	18475	10.7	12.6	16.7	•							
Haleakala	7119	1765	391		2156	30159	4519		34678	17612	5.2	10.1	9.8								
Monument_Peak	7110	1619	321	207	2147	28121	3630	1716	33467	23332	5.3	15.9	16.3								
Katzively	1893	1189	320	227	1736	18178	2610	1432	22220	17853	36.4	44.8	39.3					- 1			
Arequipa	7403	1572	137		1709	17953	753		18706	6910	6.5	7.3	4.3					- 1			
Shanghai_2	7821	1447	166	29	1642	16997	1591	162	18750	9410	11.9	14.5	18.8					- 1			
Beijing	7249	1264	313	59	1636	15761	2642	406	18809	12455	8.1	22.3	14.1					T	,		
McDonald	7080	1026	365	218	1609	11110	3712	919	15741	15357	11.3	11.6	12.6					▼			
Hartebeesthoek	7501	1201	265	17	1483	14229	2028	93	16350	8960	5.0	10.0	11.4								
Simeiz	1873	755	280	61	1096	9479	2478	594	12551	10269		47.6	56.4								
Kiev	1824	821	101		922	8500	629		9129	3920	7.1	20.0	22.9								
Ajaccio	7848	770	4		774	11162	27		11189	3564											
Kunming	7820	677	68		745	8528	425		8953	3848	17.2	18.9	23.0								
Papeete	7124	506	144	18	668	8859	2092	100	11051	7273	4.0	10.0	9.7								
Tanegashima	7358	427	89	100	616	6176	780	620	7576	6535	4.9	5.5	6.6								
Simosato	7838	434	143		577	8224	1919		10143	6651	7.6	9.6	14.2								
Koganei	7308	360	101	85	546	4754	893	601	6248	6421	9.6	13.1	15.2								
Riga	1884	393	78	6	477	8575	1212	42	9829	4834	7.6	14.6	14.2								
Grasse_LLR	7845	129	102	44	275	3085	1106	271	4462	4476	6.3	14.8	13.6								
Lada	1031	171	20		107	2650	105		20.42	1001	14.0	60.4	70.0								

Below are the detailed descriptions of each column in Table 1 L:

7811 129

the first column, L1, is the station location name.
 the second column, L2, is the monument marker number.
 the third column, L3, is the munder of nights during the past 12 months in which there were Lunar ranging measurements
 the fourth column, L4, is the number of Junar Luser Ranging normal points during the past 12 months
 the fifth column, L5, is the number of Junar Luser Ranging normal points during the past 3 months
 the sixth column, L6, is the average Lunar Luser Ranging normal points rms 3 months in mm

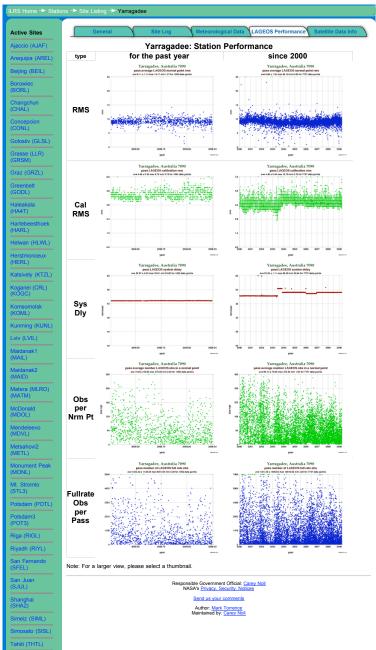
193 1534

69

641

2175

998


1790 17.1

http://ilrs.gsfc.nasa.gov/stations/sitelist/YARL_general.html

Page 1 of

Stations Yarragadee 4/16/09 1:54 PM

Summary

- Analysis Working Group solutions charted
- Network Performance Card revamped
- LAGEOS tracking is limited
- Station properties now more accessible
- We solicit Web-Site suggestions