Transitioning the NASA SLR network from the Time Interval Mode to the Event Timing Mode for sustainability, improved Stability, Precision, Accuracy, and Data Quantity

Thomas Varghese NASA SLR

Gratefully acknowledges contributions from:

NASA code 453, Peraton, Cybioms, NASA's Global SLR Operations team <task responsibility> UMBC <analysis>

NASA SGP, ILRS, KBRWyley <review team>

Background

- 1. NASA SLR has a Global distribution of SLR stations in key locations;
- Locations include: Moblas7@Greenbelt, MD; Mobas4@Monument Peak, CA, TLRS4@Haleakala, HI; Moblas8@Tahiti, F. Polynesia; TLRS3@Arequipa, Peru; Moblas6@Hartebeesthoek, SA, and Moblas5@Yarragadee, Australia
- 3. NASA SLR sustaining engineering maintains the systems for best data quality and quantity;
- 4. TIU is a critical part of the range measurement scheme;
- 5. HP5370 has served the SLR program well during the 25+ years since its introduction;
- 6. HP support ceased in early 2000; unable to calibrate the TIU, get parts, to sustain ops;
- 7. Occasional problems, performance issues, and systematics;
- 8. <u>High risk</u> item for the SLR network maintenance;

Past TIU data issues - Examples

TIU1(M7) - TIU2(backup) Comparison on LEO satellites

(LEO data from the 2013 NGSLR collocation period); Red plot = (3σ filtered) shot by shot difference; Green plot = 30 point MA; X-axis: 1 divn = 60 seconds; Y-axis: 1 divn= 3 mm

- 1. During NGSLR collocation, a spare TIU was integrated in M7(7105), in case the M7 TIU failed;
- 2. Above data shows simultaneous data taken on multiple LEO satellites;
- 3. 30 sec MA depicts the trend in the data.
- 4. BLUE dotted rectangle in the beginning is the cal data small variations;
- 5. Larger (6+mm) fluctuations for satellite;

System changes require Performance Verification

- 1. Industry approach for qualifying a device is by comparing with a standard;
- 2. Intercomparison allows to characterize the inherent systematics;
- 3. SLR System needs "bias free cal"; Cal instability /drifts/jumps maps into the range; Ground Tests on multiple targets at surveyed ranges for range intercomparison;
- At the multi-system level, collocations amongst the NASA stations and with international (non-NASA) stations; [RB] <5 mm
- 5. Intercomparison of Time of Flight devices (e.g., 1992, 2013); **|RB| <5 mm);**
- 6. Extensive testing in the lab with simulated ranges
- 7. Tests performed in an operational system can be invasive or interrupting How do we <u>implement + test + baseline + validate a change</u> without interrupting the operational data flow and causing any RB?

Simplified Parallel TOF Test Configuration

- 1. TIU based TOF: res: 20ps; SS RMS: ~22ps; Stability: ~10ps; Epoch time res= 0.2μs; PRF=10, 5, 4, 2Hz
- 2. ETM based TOF: res: 1ps; SS RMS: ~3ps; Stability: ~2ps; Epoch time res= 1ps; PRF =10Hz (max laser PRF)
- **3. Differential RB can be determined;**

ETM Test configurations in M5, M6, M7, and T4

- 1. All units tested in M7 in 2015;
- 2. More than 1 ETM going through the formal testing (M5, M7) in 2017;
- 3. RB evaluation from normal point and full rate data analysis
 - Untested stations to be equipped with previously tested ETMs (at M7 or M5) to effect a shortened test period;

Note:

M5, 6, 7→ Moblas 5,6,7

T4 \rightarrow TLRS4, Haleakala

M5 (7090) ETM#011 & TIU - Stability Test January 15, 2017 @ 09:33

UTC X-axis: Time UTC; 1 divn ~12 min ; Y-axis: SysDel: 1 divn=10ps

M7(7105) ETM #010 & TIU Stability Test March 13, 2017 @ 21:00 GMT Y-axis =10ps/divn; X-axis: UTC

- 1. #NPT=103,878; AllSat Range Diff during DOY 32-151; Mean TIU-ETM#011 (DOY 32-151) = -1.328mm;
- 2. #NPT= 20,095; AllSat Range Diff during DOY152-176; Mean TIU-ETM#010 (DOY 152-176) = -1.220mm;
- 3. Mean of the 2 groups are shown by the magenta and green lines; mean computed after 3 of filtering

- 1. LEO Range Diff; **#NPT=56478** Mean TIU-ETM**#011** (DOY 32-151) = -1.555mm;
- 2. LEO Range Diff: **#NPT=11620**; Mean TIU-**ETM#010** (DOY 152-176) = **-1.506mm**;
- 3. Mean of the 2 groups are shown by the magenta and green lines; mean computed after 3σ filtering

- 1. MEO Range Diff; **#NPT=35476**; Mean TIU-ETM**#011** (DOY 32-151) = -1.616mm;
- 2. MEO Range Diff: **#NPT=5988**; Mean TIU-**ETM#010** (DOY 152-176) = **-1.443mm**;
- 3. Mean of the 2 groups are shown by the magenta and green lines; mean computed after 3σ filtering

- 1. HEO Range Diff; **#NPT=9481**; Mean TIU-ETM**#011** (DOY 32-151) = 0.703mm;
- 2. HEO Range Diff: **#NPT=2146**; Mean TIU-**ETM#010** (DOY 152-176) = **0.749mm**;
- 3. Mean of the 2 groups are shown by the magenta and green lines; mean computed after 3 σ filtering

- 1. GEO Range Diff; **#NPT=1162**; Mean TIU-ETM**#011** (DOY 32-151) = 0.461mm;
- 2. GEO Range Diff: **#NPT=311**; Mean TIU-ETM#010 (DOY 152-176) = 0.646mm;
- 3. Mean of the 2 groups are shown by the magenta and green lines; mean computed after 3 σ filtering

M5 – TIU & ETMs(#011 and #010) comparison Summary1

M5 - 2017 SLR data	Mean (mm)	StDev (mm)						
Grouping based on Orbit								
M5-2017_DOY 32-176_Allsat	-1.315	2.323						
M5-2017_DOY 32-176_LEO	-1.553	2.242						
M5-2017_DOY 32-176_MEO	-1.591	2.010						
M5-2017_DOY 32-176_HEO	0.861	2.292						
M5-2017_DOY 32-176_GEO	0.902	3.104						
Grouping based on ETM#011 (DOY 32-151) and ETM#010 (DOY 152-176								
M5-2017_DOY 032-151_Allsat	-1.328	2.195						
M5-2017_DOY 152-176_Allsat	-1.220	2.721						

- 1. ETM#011 in M5 during 2017 DOY 32-151; replaced with ETM#010 from M7 for DOY 152-176
- 2. Normal point Comparison between TIU and ETM made using 2017 data by grouping it into AllSat, LEO, MEO, HEO, and GEO; data was also grouped into 2 groups based on above DOY
- 3. Iterative 3-sigma filtering was performed to remove outliers in each group;
- 4. Mean and StDev of the data statistics for the various groups are shown in millimeters;

M5 – TIU & ETMs(#011 and #010) comparison Summary2

M5 - Paired Data between ETM#011 and ETM#010	Mean (mm)	Delta between the pair (mm)	StDev (mm)	Data Points
M5-TIU-ETM-2017-npt-diff-DOY032-151 (GEO 1)	0.461	0 194	2.517	1162
M5-TIU-ETM-2017-npt-diff-DOY152-176 (GEO 2)	0.646	0.164	2.639	311
M5-TIU-ETM-2017-npt-diff-DOY032-151 (HEO 1)	0.703	0.046	1.938	9481
M5-TIU-ETM-2017-npt-diff-DOY152-176 (HEO 2)	0.749	0.040	2.451	2146
M5-TIU-ETM-2017-npt-diff-DOY032-151 (MEO 1)	-1.616	0 172	1.916	35476
M5-TIU-ETM-2017-npt-diff-DOY152-176 (MEO 2)	-1.443	0.175	2.541	5988
M5-TIU-ETM-2017-npt-diff-DOY032-151 (LEO 1)	-1.555	0.040	2.094	56478
M5-TIU-ETM-2017-npt-diff-DOY152-176 (LEO 2)	-1.506	0.049	2.679	11620

- 1. AllSat data grouped by DOY AND ETM# ; e.g., GEO 1 \rightarrow GEO data for DOY 32-151 with ETM#011;
- 2. GEO2 \rightarrow GEO data for period 152-176 using ETM#010;
- 3. Each group is iteratively 3 sigma filtered;

Summary – 7090 (Yarragadee) Results from Erricos & Magda, UMBC

TIME PERIOD	ORBITAL CLASS	GRANT AVG	STD. DEV.	COMMON NUMBER of RANGES
	150	1.02	0.62	7500
BEFORE DOY 152	LEO	-1.43	0.63	/582
ET011	MEO	-1.63	0.93	4992
	HEO	0.92	0.48	1415
	GEO	0.16	3.51	49
	GRANT AVG	-0.17	0.35	14038
AFTER DOY 152	LEO	-1.62	0.82	11837
ET010	MEO	-1.49	1.16	6163
	HEO	1.20	0.56	2409
	GEO	0.56	2.21	149
	GRANT AVG	0.08	0.42	20558

2015-16 (~3 months) M7 (7105) (TIU-ETM Range Offset) vs. Pass#; ~1000 passes from LEO to HEO <NO 3 sigma FILTERING of the Pass Mean>; Mean Difference computed using FULL RATE data; Mean offset : ~ -4mm; 1σ ~1mm; X-axis: Data sequence #; Y-axis: 1 divn = 1mm

- 1. 2 sets of ETM (Blue and Red dots) data taken sequentially in M7 with a common TIU ;
- 2. 30 point MA shown in Magenta and Light Green for the above respective data groups;
- 3. Blue dot ETM#010 from M7 was sent to M5 to replace M5's prior ETM#011 (see M5 charts);
- 4. Mean Offset between M7 TIU & ETM#010 = -4.512 mm;
- 5. Mean Offset between M7 TIU & ETM#009 = -4.865mm

Moblas 7- Multi ETM NPT comparison summary

2017 M7 Data - Grouping based on Orbit	Mean (mm)	Sigma (mm)	Data Points						
M7-2017- DOY 020-177_HEO	-4.991	1.970	1492						
M7-2017- DOY 020-177_LEO	-4.670	2.458	22796						
M7-2017- DOY 020-177_MEO	-4.596	2.153	11193						
M7-2017- DOY 020-177_AllSat	-4.590	2.340	35712						
2017 M7 data - Grouping based on ETM#010 (previously in M7) and ETM#009									
M7-2017- DOY 020-109 _AllSat	-4.512	1.808	19504						
M7-2017- DOY 110-177_AllSat	-4.865	2.820	15828						

- 1. 1 hour Stability Data sequence taken during DOY 18-153 is shown in sequence on the X-axis ;
- 2. Primary Y-axis shows ETM Sys Delay; secondary Y-axis shows TIU Sys Delay;
- 3. The individual behavior as well as externally (rest of the data loop) induced effects are clear in this plot from the pattern;

T4(7119): (TIU-ETM#012) npt comparison Summary

- Mean Allsat TIU-ETM offset = -0.088mm; $1\sigma = 2.68$ mm; 1.
- 2. Mean LEO TIU-ETM offset = -0.242mm; $1\sigma = 2.77$ mm;
- Mean MEO TIU-ETM offset = 0.081mm; $1\sigma = 2.44$ mm; 3.
- Sub-mm agreements in TLRS4 (7119) 4.

						#passes	86	3	LEO	Mean	0.531	mm
M6: TIU-ETM Performance Summary		#passes	86	3	LEO	1σ	1.949	mm				
#Passes	2162	AllSat	Mean	0.369	mm	#Passes	365	Lac	neos 1, 2	Me	an 0.19	3 mm
#Passes	2162	AllSat	1σ	2.038	mm	#Passes	365	Lag	geos 1, 2	1σ	1.94	0 mm
1. Sub-mm agreements in M6 (7501)												

Passes 450

GNSS

 1σ

2.045 mm

M5 (7090), M7 (7105), and T4 (7119): TIU-ETM Evaluation - Summary

- **1. Most extensive test data** sets ever collected and analyzed for a NASA SLR engineering upgrade/replacement;
- 2. Test NPT Data include: M5 (120000+); M7 (35000+); M6 (18000+); T4 (16000+);
- 3. Sub-mm level agreements when averaged over a large data set in multiple ETM configurations;
- 4. In the case of M7, with no PMT amplifier for GNSS and thus a common HW configuration for all satellites, sub-mm (<0.5mm) agreements seen amongst ALL satellite groups.
- Published NASA SLR work from 1992 on TIU showed variability (~ 5mm) in RB amongst the 5 HP5370B TIUs used in that study.
- 6. Ops data unconstrained by the Test configuration; SMOOTH transition
- 7. ETM data has better **Normal Point RB, Precision, and Stability** characteristics than TIU;