

Single versus multi-photon SLR using SPAD detectors

I. Prochazka¹, J. Kodet^{1,2}, J. Blazej¹

Presented at

2017 ILRS Technical Workshop, "Improving ILRS Performance to Meet Future GGOS Requirements" Riga, Latvia, October 02 through 05, 2017

¹Czech Technical University in Prague, Prague, Czech Republic ²TU Munich, Geodetic Observatory Wettzell, Bad Kötzting, Germany

Key questions #1 – Session 3

 Return signal strengths and satellite return rates, single x multiple photons approach

"never ending story..." in SLR

SLR systems performance comparison

- Based on *Quarterly Global Report Cards* published by ILRS www pages.
- Simple averages over 4Q 2016... 2Q2017 all 5 data centers

Selected 6 SLR sites among the most productive: multi photon

- Yaragadee
- 2
- Mt.Stromlo 2 3
- 5 Graz Matera
- 6

4

Changchun single – multi photon single – multi photon Herstmonceux, single photon only single – multi photon <u>~ identical HW</u> multi photon

Site Information		DGFI Orbital Analysis				Hitotsubashi Univ. Orbital Analysis				JCET Orbital Analysis				MCC Orbital Analysis				SHAO Orbital Analysis			
Station Location	Station Number	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP	LAG NP RMS (mm)	short term (mm)	long term (mm)	% good LAG. NP
Baseline		10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95	10.0	20.0	10.0	95
Yarragadee	7090	3.3	14.9	3.0	100.0	2.0	7.1	1.5	100.0	2.2	14.0	3.0	99.3	2.2	17.2	2.9	98.8	1.9	7.8	1.5	93.7
Changchun	7237	4.5	24.1	5.2	99.9	3.1	27.5	5.4	100.0	2.1	33.3	7.3	95.9	2.9	21.0	5.4	97.3	4.5	27.2	9.1	94.7
Mount_StromIo_2	7825	3.0	17.3	2.9	100.0	2.3	9.7	1.9	100.0	1.8	13.2	3.7	99.7	2.8	15.2	3.4	97.5	1.7	10.4	2.1	95.8
Herstmonceux	7840	1.8	10.8	2.3	100.0	1.0	6.5	1.3	100.0	1.1	10.3	2.6	100.0	1.6	10.3	1.9	99.7	0.8	6.5	2.8	97.7
Zimmerwald_532	7810	2.7	11.1	3.0	100.0	1.7	7.5	1.5	100.0	1.9	10.8	3.1	99.8	2.9	11.9	1.7	97.5	1.7	7.6		94.8
Wettzell	8834	3.0	13.1	6.5	100.0	2.3	8.9	6.2	100.0	1.8	12.2	5.9	99.6	2.5	10.5	7.4	98.3	1.6	10.9	8.2	95.0
Graz	7839	2.0	91	3.5	100.0	15	62	23	100.0	Π.9	11 1	4 N	99.3	1.8	8.5	3.5	97.1	0.6	8.8	2.5	96.1

SLR systems performance comparison # 1 Lageos Precision

Stations 2,3,4,5 are using C-SPAD detector by F.Koidl, Graz

SLR systems performance comparison # 2 Bias long term stability

Workshop goals #2

Prochazka et al, 19th ILRS Workshop, Matera, 2015

- "What changes in procedures and processes would give the stations greater ability to detect biases ? "
- ANSWER
 "1 photon only " approach

Satellite

Laser station

- => missing time walk effects
 - => reducing target spread problem

Key questions #2 – Session 3

- For single photon "...The current philosophy is to reduce return rate to about 10% to try to capture primarily singles".
- "What would we lose if we expanded the capture rate to 20%, 30% or more? "

- Two key issues
 - Echo signal detector response
 - Target response

Key questions #2 – Session 3 SPAD DETECTOR RESPONSE

GOOD NEWS Using 10 ps laser pulse @ 532 nm SPAD detector can operate up to 50% rate with negligible (< 1mm) time walk when applying 2.2*sigma data editing (J.Kodet, J.Eckl, Wettzell, 2014)

BUT

This feature can be utilized for ideal targets only, laser time transfer or one way ranging.

Echo signal spread by target depth will cause a significant time walk for rates > \sim 15 %

New single photon only SPAD detector for SLR

- SLR and laser time transfer ground segment
- 200um TE3 cooled SPAD
- New control circuit (8 GHz bw)
- Output pulses fall times ~ 40 ps
- Low noise for kHz reprates
 - Jitter (single shot)1.5 mm rmsLow temperature drift< 70 fs/ K</td>Timing stability TDEV< 80 fs @ hours</td>
- Field version is under construction now.
- More details on the Poster

CONCLUSION

- Answers to several key questions:
- Single photon only approach is providing the best bias stability and the lowest NP spread while maintaining high station Lageos productivity (Herstmonceux).

 Echo rates up to 50% can maintain sub-mm biases using < 10ps lasers and zero depth target.

 New SPAD detector provides 1.5 mm single shot jitter and extremely high timing stability and low drift.

 My dream – zero target signature geodetic satellite (uncoated Luneburg sphere on ~ Lageos orbit)