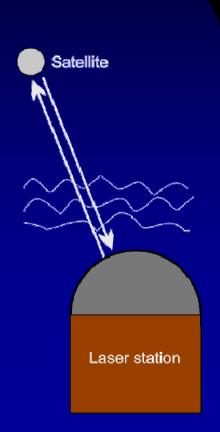


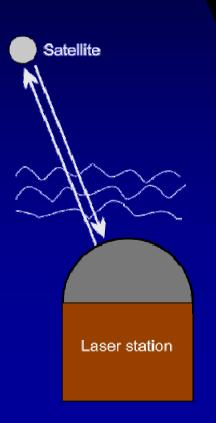
SLR Station Biases


Ivan Procházka

Presented at:

2015 ILRS Technical Workshop, Matera, Italy, October 2015

Czech Technical University in Prague, Czech Republic



- SLR is a space measuring technique which provides UNIQUE feature of DIRECT range / time measurement
- Its role is inevitable in ITRF definition and calibration of numerous other techniques (GNSS....)
- GGOS requirements 1 mm & 0.1 mm / yr
- All the SLR hw chain components must be calibrated for their absolute delays with (sub) mm accuracies

Workshop goals #1

- Which biases should be seen at the stations?
- How do we stabilize calibration?

Accuracy – Biases "never ending story.."

- GENERAL TECHNIQUE Comparison to more accurate value
- HOWEVER for SLR check such a value is not available
- SOLUTION characterizing all (!) individual hw error budget contributors, their precision and biases (M. Pearlman, System characterization parameters, Herstmonceux, 1984)

PROBLEMS

Satellite

Laser station

- contributors list
- how to calibrate each contributor ?
- is our contributors list complete ?

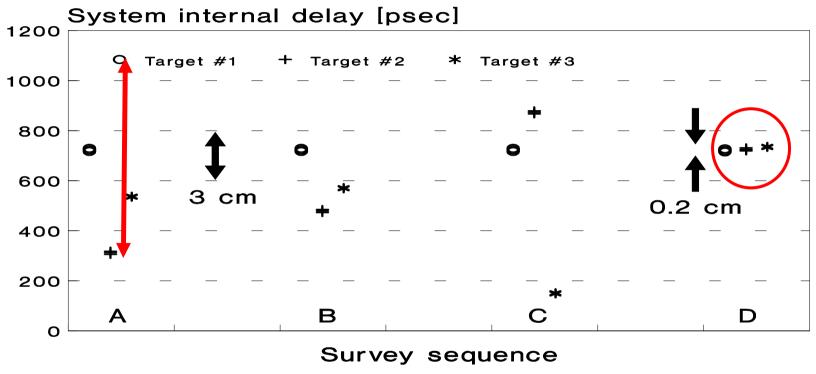
"Ranging machine" error budget contrib.#1 Ground target calibration

- Calibration & target setup
- Target distance
- Laser wavefront
- Optical arrangement
- RF interference
- Receiver setup
- Timing system linearity

T/R optics configuration parallax, FoV,

range accuracy, target depth, ref. point

near / far field pattern


near field, 1 Photon

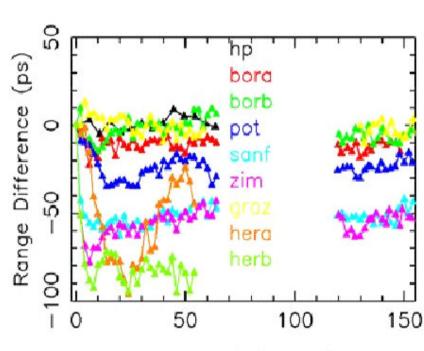
for short distances

range gating, echo signal strength

"Ranging machine" biases identification

Ground target calibration / survey P-PET st SLR Shanghai

I.Prochazka, Shanghai, August 2001

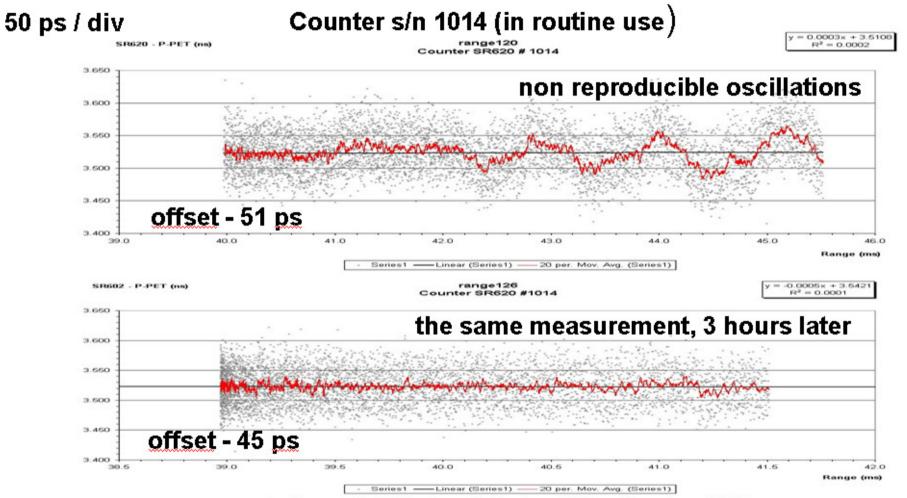

The 3 cal. targets /hollow 2D retros/ have been re-surveyed and the calibration procedure tuned until the the system internal delay value consistency of 2 mm has been achieved. The 2mm level was a precision limit for the system

"Ranging machine" biases identification

RANGING COUNTERS COMPARISON TO P-PET

P. Gibs, Herstmonceux, 2002

 Shown here is a summary plot of all the devices.



Range (millisecs)

All timers – Herstmonceux–D

I.Prochazka, 2015 ILRS Workshop, Matera, October 2015

SR620 / P-PET Counter Linearity Potsdam, 2001, LAGEOS pass

L. Grunwald, R.Neubert, H.Fischer, H.Pino, Potsdam, 2001

"Ranging machine" error budget contrib. #2 Local conditions and atmosphere

Meteo sensors

calibration, stability

- "Local atmosphere"
- Local ties

pollution, in-homogenity,...

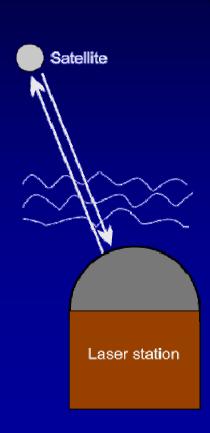
relation to coordinates

"Ranging machine" error budget contrib.#3 Epoch timing

Time scale

source, distribution,...

Clock frequency

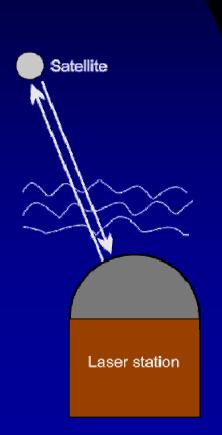

source, stability relation to "1pps"

SLR Time reference

"1pps", trig.level, BW,.....

 Epoch calibration constant
 laser fire epoch versus pulse cross. invariant point

Workshop goals #2

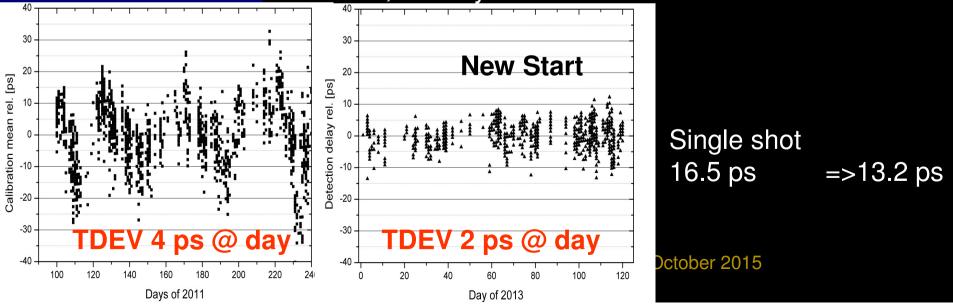


- "What changes in procedures and processes would give the stations greater ability to detect biases ? "
 - ANSWER "1 photon only " approach

- => missing time walk effects
- => reducing target spread problems GNSS

Workshop goals #3

 "What station hardware, equipment, software, etc. would give the stations greater ability to detect biases ? "

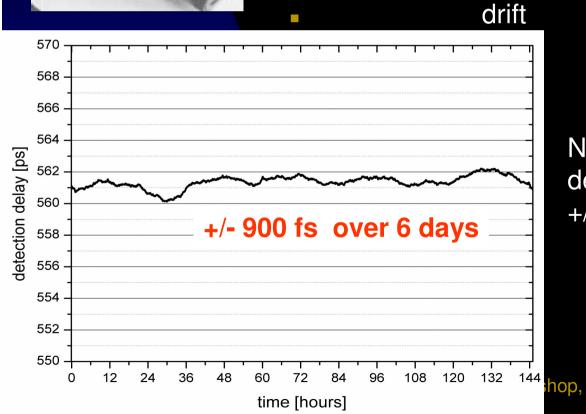

In general – greater stability is a prerequisite for smaller biases

New Start detector + discriminator

- fully integrated solution
- Drift ~< 350 fs / K (!)
- Jitter < 1 ps
- output NIM fall times ~ 60 ps
- J. Kodet et al, Rev. of Sci. Instruments. 2012, Vol.83/3

Graz SLR calibration mean, 120 days each

SPAD detector package 1- photon version Low temperature drift

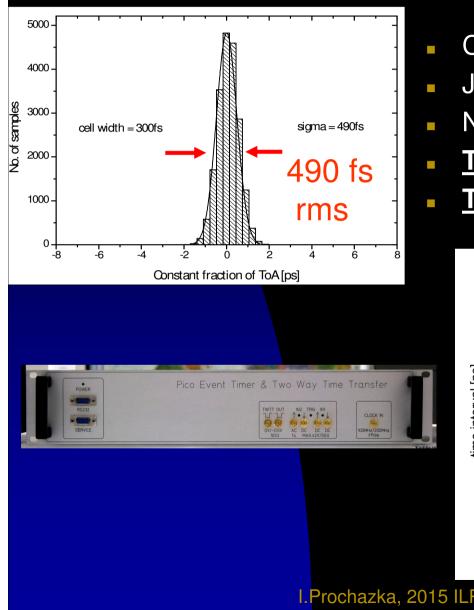


New control electronics,

= >

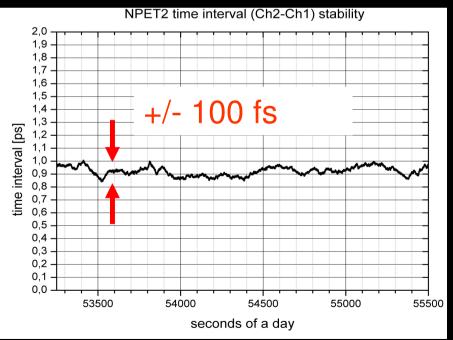
- Fully passive temperature control
- Outputs rise / fall times ~ 100 ps

jitter


< 15 ps 260 fs / K (!!)

New SPAD + Start + NPET detection delay over 6 days, +/- 2 K

> I. Prochazka et al, **Rev. Sci. Instrum**. 84, 046107 (2013)


hop, Matera, October 2015

Sub-ps Timing System NPET for SLR

- Compact & robust & user friendly
 - Jitter < 0.9 ps rms
- Non-linearity
 - Temp. epoch drift < 0.5 ps / K
- <u>Time int. stab.</u>
- +/- 0.1 ps /hour

< 0.5 ps

Two Way Time Transfer via single coaxial cable Image: State of two independent time coales #1

- Comparison of two independent time scales #1 and #2
- Sub-ps precision & few ps accuracy
- Comparison in parallel to event timing in the same device
- Attractive for accurate epoch ("1pps") reference distribution within the observatory

I.Prochazka et al, Rev.Sci. Instr. (2012)

Conclusion – (hw) stability

- New Start detector improves the long term SLR system stability to a (sub) ps level
- Single Photon Avalanche Detector was optimized for long term stability of detection delay
- NPET timing system was optimized for SLR provides sub-ps precision and stability
- Two way time transfer option built in NPET provides time synchronization to local time scale with few ps accuracy

Recommendations #1 General

- Operate the SLR on 1 photon level only
- Maintain maximum system delay stability (selection of components, environment, procedures..)
- Permanently try to identify new possible bias sources
 ".. Suspect everything .." Herstmonceux, 2015
- Repeatedly check the individual contributors using more accurate references

Recommendations #1 SLR system calibration

- Use optically correct calibration targets 2D hollow retro recommended for separate T/R
- Use efficient spatial filtering small FoV suppresses spurious reflections
- Ensure perfect alignment of the receiver optics (star tracking / scanning is a good check)
- Use multiple targets at different az and range check the system delay consistency
- Re-survey the targets geometry regularly use various scales, techniques,.....