

ESA-INFN Contract No. 4000108617/13/NL/PA

Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of GALILEO IOV LRA

L. Porcelli*, S. Dell'Agnello, A. Boni, C. Cantone, E. Ciocci, S. Contessa, G. Delle Monache, C. Lops, M. Martini, G. Patrizi, L. Salvatori, M. Tibuzzi, N. Intaglietta, P. Tuscano, C. Mondaini, M. Maiello

Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Rome, Italy.

* Corresponding author: luca.porcelli@Inf.infn.it

- Two Optical Ground Support Equipment (OGSE).
- SCF (top right) & SCF-G (bottom right) dedicated to Galileo, other GNSS.
- Two AM0 sun simulators, IR thermometry.
- Detailed optical testing.
- J. Adv. Space Res. 47 (2011) 822–842.

- Two Optical Ground Support Equipment (OGSE).
- Class 10000 (ISO 7) clean room.

Test article → 7 CCRs cluster assembled on the EM LRA base plate in a hexagonal axial symmetric configuration.

→ base plate designed to allow its temperature control according.

→ base plate has integrated radiators and is provided with TCS to simulate orbital transient conditions.

EM LRA (engineering Model Laser Retroreflector Array)

→ instrumented with 7 PT 100 RTDs to measure the temperature of the CCRs housing.

→ assembled on the 3-axis movement system of the SCF facility, to be exposed to the Sun simulator, SCF cold wall and SCF optical window for laser interrogation.

CCRs and their orientation.

Base plate front CAD (extracted from LNF-GAL-DDR-002-0).

2015 ILRS Technical Workshop

Test article

Base plate rear CAD (extracted from LNF-GAL-DDR-002-0).

Test article

Assembly set up and ready for testing.

The test accounts for 3 different conditions:

Isothermal test	EM LRA in air at room temperature
Default SCF-Test	EM LRA in SCF thermal vacuum with 3
	different starting T cases
GCO test	EM LRA in SCF thermal vacuum in GCO
	conditions

Review of success criteria as per:

LNF-GAL-TP-001-0 "Test Plan" and references therein.

1.1.4 REQUIREMENTS TO BE VERIFIED

ID	Requirement	Condition	n Value [m ²] (*)	
1	Single CCR Optical Cross Section intensity unit	Air Isothermal	0.55x10 ⁶ /2.14 x10 ⁶	
2	Single CCR Optical Cross Section intensity unit	SCF-Test	0.55x10 ⁶ /2.14 x10 ⁶	
3	Single CCR Optical Cross Section intensity unit	GCO	0.55x10 ⁶ /2.14 x10 ⁶	

"A reference for the performance should be the Far Field Diffraction Pattern (FFDP) of a Galileo IOV retroreflector in its design specifications. In particular it should be verified the **average intensity** at the velocity aberration of a Galileo satellite, which is 24 μ rad" [LNF-GAL-TP-001-0]. The aforementioned average intensity should be compatible with values stated in the table.

- In Air and Isothermal conditions.
- Array fixed at movement system.
- Dedicated analyses to extract information.

 Istituto Nazional di Fisica Nuclean
 Iazionali di Frascat

Left: FFDP; right: average intensity versus velocity aberration of CCR #1.

Left: FFDP; right: average intensity versus velocity aberration of CCR #2.

Left: FFDP; right: average intensity versus velocity aberration of CCR #3.

Left: FFDP; right: average intensity versus velocity aberration of CCR #4.

 Istituto Nazional di Fisica Nuclean
 Iazionali di Frascat

Left: FFDP; right: average intensity versus velocity aberration of CCR #5.

Left: FFDP; right: average intensity versus velocity aberration of CCR #6.

Left: FFDP; right: average intensity versus velocity aberration of CCR #7.

Intensity at the VA of Galileo-IOV (24 µrad)

Left: CCR #1; right: CCR #2.

Intensity at the VA of Galileo-IOV (24 µrad)

Left: CCR #3; right: CCR #4.

Intensity at the VA of Galileo-IOV (24 µrad)

Left: CCR #5; right: CCR #6.

Intensity at the VA of Galileo-IOV (24 μ rad)

- CCR 1 and CCR7.
- Thermal relaxation time of retroreflector (τ_{CCR}).
- Optical response.
- Array fixed at movement system.
- Dedicated analyses to extract information.

SCF-Test - Thermal analysis

• 3 different SCF-Test with:

 T_{PLATE} =-40°C - T_{PLATE} =0°C - T_{PLATE} =+45°C.

- For every test: IR data at least for 30m SUN ON phase + 30m SUN OFF phase.
- 1IR/30s both for SUN ON and SUN OFF.
- IR Pictures analysis with dedicated SW in order to obtain the front face CCR temperature vs time.
- The data are then processed with an IDL SW in order to obtain the characteristic thermal relaxation time τ_{ccr} .
- In addition we acquired the temperature variation of the seven temperature probes (PT100) positioned on the rear of each CCR mounting of the array.

We computed both τ_{CCR1} and τ_{CCR7} using data from CCR1's SCF-Test.

The overall results (average of τ_{CCR} mean for all T_{plate} temperatures) give:

 $\tau_{\rm CCR}$ = (600 ± 50) s

There are hundreds of plots to show...

```
CCR 1 @ T = + 45 ° C
          FFDP and the intensity versus VA plots
          Intensity at the VA of GALILEO-IOV (24 µrad)
CCR 1 @ T = 0 ^{\circ} C
          FFDP and the intensity versus VA plots
          Intensity at the VA of GALILEO-IOV (24 µrad)
CCR 1 @ T = - 45 ° C
          FFDP and the intensity versus VA plots
          Intensity at the VA of GALILEO-IOV (24 µrad)
CCR 7 @ T = +45 ° C
          FFDP and the intensity versus VA plots
          Intensity at the VA of GALILEO-IOV (24 µrad)
CCR 7 @ T = 0^{\circ} C
          FFDP and the intensity versus VA plots
          Intensity at the VA of GALILEO-IOV (24 µrad)
CCR 7 @ T = -45 ° C
          FFDP and the intensity versus VA plots
          Intensity at the VA of GALILEO-IOV (24 µrad)
```


CCR 1 @ T = 0 ° C

CCR 1 @ T = 0 ° C

CCR 1 @ T = 0 ° C

I N F N

Laboratori Nazionali di Frascat

Istituto Nazionale di Fisica Nucleare

CCR 1 @ T = 0 ° C

CCR 7 @ T = 0 ° C

CCR 7 @ T = 0 ° C

CCR 7 @ T = 0 ° C

CCR 7 @ T = 0 ° C

Orbit Test

- Initial condition: payload to cold shield (-90°) and plate at steady state at -45°C.
- Sunrise (3h): 1FFDP+1IR every 20m.
- Earth Shadow (1h): 1IR every 30s, 1FFDP/min for first 15m, 1FFDP/2m for next 15m, 1FFDP/ 30m for last 30m.
- Sunset(3h): 1FFDP+1IR every 20m.

Optical analysis of CCR1 orbit

rad

40

50

30

Velocity aberration (urad)

Figure 458 - Left: FFDP; right: average intensity versus velocity aberration of CCR #1 (000).

Figure 469 - Left: FFDP; right: average intensity versus velocity aberration of CCR #1 (011).

60

.60

-60

urad

Figure 494 - Left: FFDP; right: average intensity versus velocity aberration of CCR #1 (036).

Figure 504 - Left: FFDP; right: average intensity versus velocity aberration of CCR #1 (046).

Optical analysis of CCR1 orbit

Laboratori Nazionali di Frascati

Istituto Nazionale di Fisica Nucleare

ΙΝΓΝ

Figure 541 - Left: FFDP; right: average intensity versus velocity aberration of CCR #7 (011).

60

Figure 576 - Left: FFDP; right: average intensity versus velocity aberration of CCR #7 (046).

Figure 531 - Left: FFDP; right: average intensity versus velocity aberration of CCR #7 (001).

Optical analysis of CCR7 orbit

'Premiale' Project funded by Ministry of Research (MIUR).

Nazionali di Frasca

- ASI & INFN instrumentation upgrades (MLRO & SCF_Lab)
- ASI Laser ranging and SCF-Test of Galileo, GRA and LAGEOS

Macro-Activity 1 Year 1 and 2	Macro-Activ. 2 Year 1	Macro-Activ. 3 Year 1	Macro-Activity 4 Year 2	Macro-Activity 5 Year 2	Macro-Activity 6 Year 2	Macro-Activity 7 Year 2
MLRO-SCF_LAB Harmonization: Harmonization of MLRO and SCF_LAB upgrades and integration of the results of the upgraded MLRO and SCF_LAB (includes Management)	MLRO@CGS : Equipment Upgrade	SCF_LAB@LNF: Infrastructure Upgrade	Upgraded MLRO: Laser Ranging to LRAs onboard Galileo satellites	Upgraded SCF_LAB: Lab Characterization of Galileo LRA Flight Model (on loan to LNF from ESA)	Upgraded MLRO : Laser Ranging to LAGEOS	Upgraded SCF_LAB: Lab Characterization of LAGEOS Engineering Model (on loan to LNF from NASA)

LRA = Laser Retroreflector Array

43

- GRA (GNSS Retroreflector Array) by INFN-ASI: 3.5 kg, 400 mm diameter; lighter/smaller than Galileo IOV.
- No degradations within ±15% errors (note scale of plot).
- http://www.lnf.infn.it/esperimenti/etrusco/documents.html.

Average Intensity at 24 µrad GRA Orbit

GRA and Galileo-IOV reflector performance

SCF 35

AD's and RD's

APPLICABLE AND REFERENCE DOCUMENTS

AD1 GNSS laser retroreflector array optical performance requirements, ILRS - TECMMO/ 2012/318, Issue 1, 02/10/2012.

AD2 ESA Contract No. 4000108617/13/NL/PA - Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors.

AD3 Technological challenges of SLR tracking of GNSS constellations, presented at the ILRS 2009 Technical Workshop, Metsovo (Greece).

AD4 CGI-NCRI, LRR Interface Control, Document GAL-CH-LRR-SUB-ICD-A-013, Issue 2, Revision 2, 16/02/2009.

AD5 Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of GALILEO IOV LRA project - EM LRA Detailed Design Report, Doc. LNF-GAL-DDR-001-1.

AD6 Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of GALILEO IOV LRA project - Engineering Model LRA SCF TEST PLAN, Doc. LNF-GAL-TP-001-1.

RD1 ECSS-E-ST-10-02C "Verification" (as replacement of ECSS-E-10 PART 2A mentioned on Appendix 3 of the Contract).

RD2 ECSS-E-ST-10-03C "Testing".

RD3 ECSS-E-HB-10-02-A "Verification guidelines".

RD4 ECSS-Q-20-07A "Quality assurance for test centers".

Thanks!