

Role of SLR on QZSS operation

Yoshimi Ohshima, Ph.D. NEC Corporation y-ohshima@cb.jp.nec.com

- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

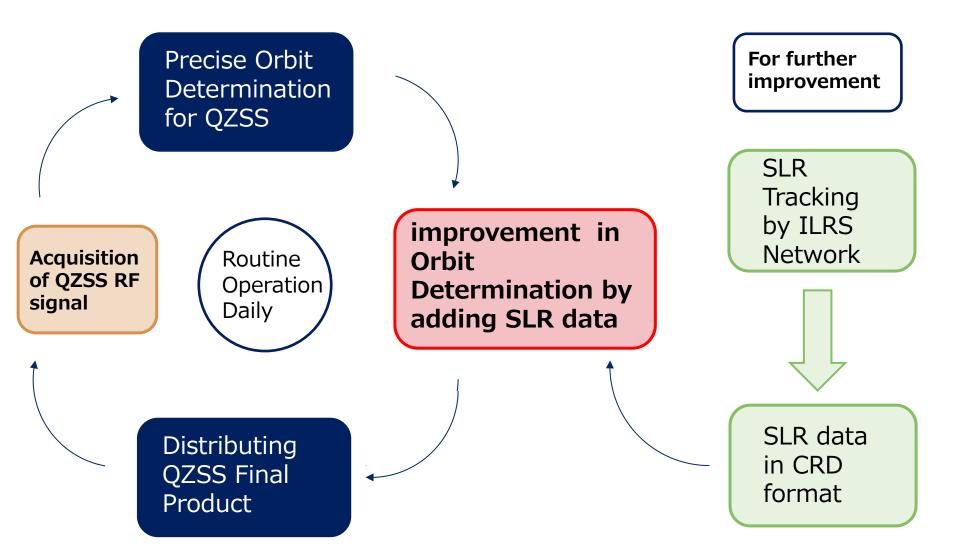
- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

GNSS Session A Questions (from ILRS workshop website)

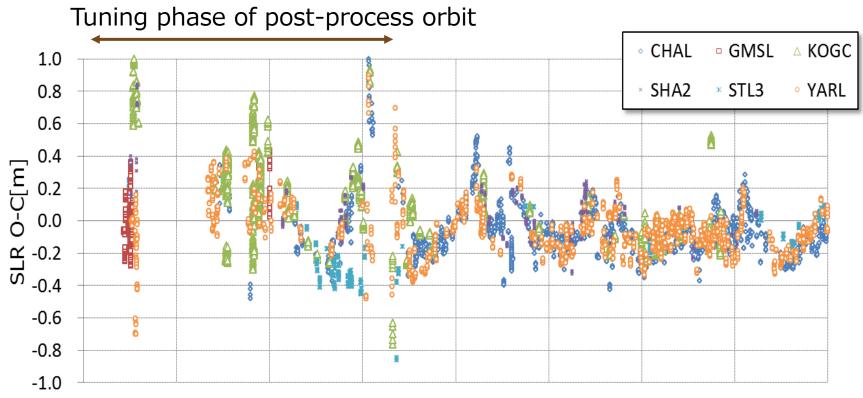
Who is analyzing the GNSS SLR data?

• TBD (QSS(QZS System Service Inc.) and/or NEC)

What products are being derived?


Precise QZSS Orbit Precise QZSS Clock

- Is the ILRS satisfying their present requirements? Data volume? Data Accuracy? Data coverage? What are the short falls?
- See Slides 6 and 19.
- What is the projection for future requirements? Timeframe?
 - Support for 4-satellite constellation starting April, 2018
 - Support for 7-satellite constellation in future (2023 and after)
- What do we see from SLR-GNSS co-location?
 - Very Important for QZSS: In QZS-1, SLR data used as reference for radial direction of orbit determination.
- Is SLR having an impact on GNSS products?



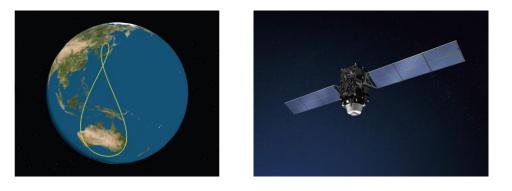
Role of SLR on QZSS operation

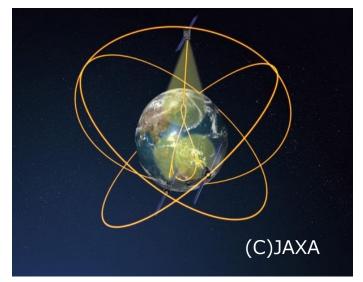
Accuracy Evaluation of the post-processed precise orbit by SLR data

2011/6/22 2011/11/14 2012/4/7 2012/8/30 2013/1/22 2013/6/16 2013/11/8 2014/4/2 2014/8/25

DATA provided by JAXA

- Accuracy evaluation using SLR data has helped modeling and parameter tuning for QZS-1 Orbit Determination.
- Japan appreciates ILRS' laser ranging activities and need continuous support for future QZSS mission.

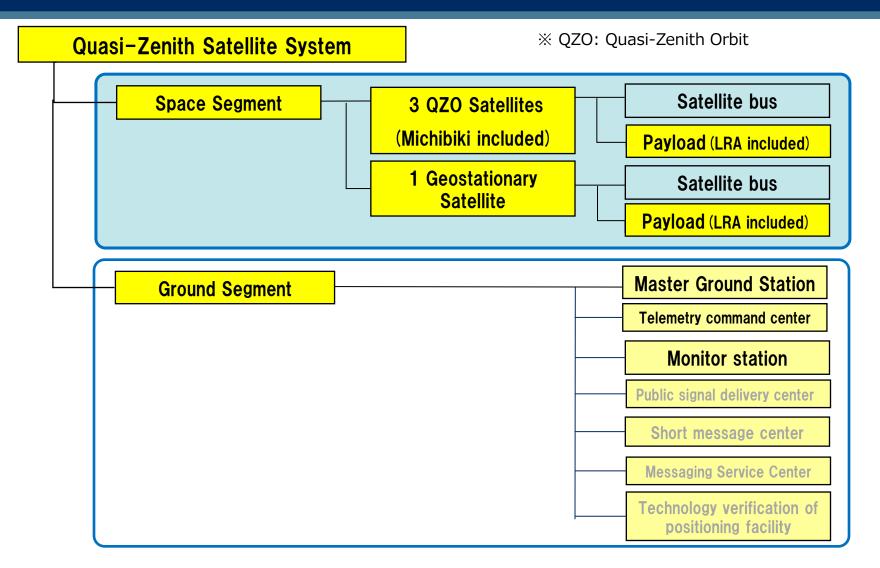



- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

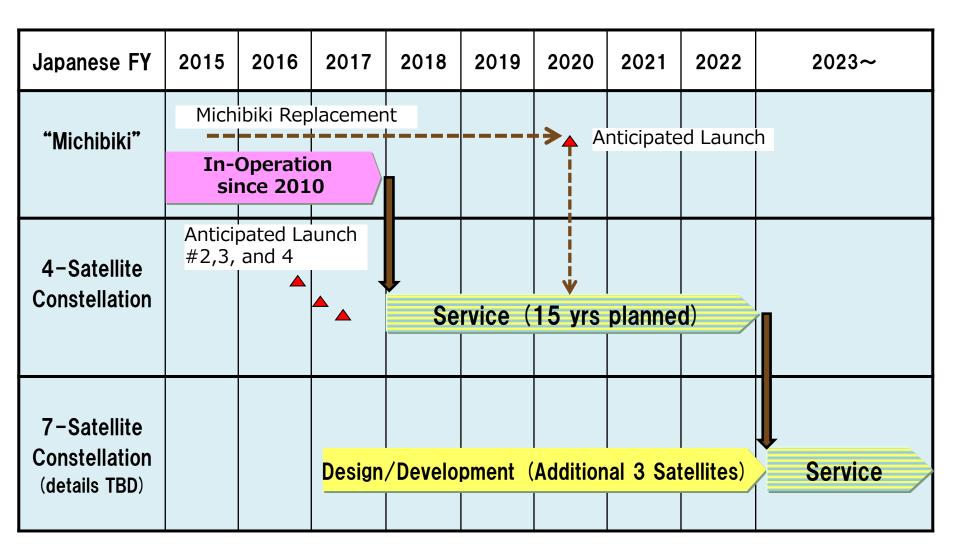
Introduction to QZSS

Quasi-Zenith Satellite System (QZSS)

- Regional Satellite Positioning System
- Service Area: Asia-Pacific region
- 1st satellite "MICHIBIKI" launched on 9/11/2010



- 3 more satellites under development for 4-satellite constellation
 - QZS-2 and QZS-4: Quasi-Zenith Orbit (inclined geo-synchronous orbit)
 - QZS-3: Geo-stationary orbit
- 7-satellite constellation officially decided by the Government of Japan



System Configuration

© NEC Corporation 2015

Deployment Schedule

10

NEC

- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

SLR related requirements for QZSS

Anticipated Launch Date: one in 2016; two in 2017
Expected Mission Duration: 15+ years
Orbital Accuracy Required: *TBD*Anticipated Orbital Parameters: See below

QZS-2 and 4		QZS-3			
Orbit type	Inclined Geo-synchronous	Orbit type	Geo-synchronous		
Semi-Major	a=42164km	Position	127E		
Axis		Inclination	I< 0.1 degrees		
Eccentricity	e=0.075+/-0.015	Eccentricity	e > 0.00001		
Inclination	40 degrees (nominal)	Eccentricity			
memoria		Frequency of Orbital Maneuvers	Every 23 days		
Frequency of Orbital	Twice a year (based on "Michibiki" operation)				
Maneuvers		Mission Timeline	Same as QZS-2 and 4		
Mission Timeline					

SLR/LRA Related Requirements

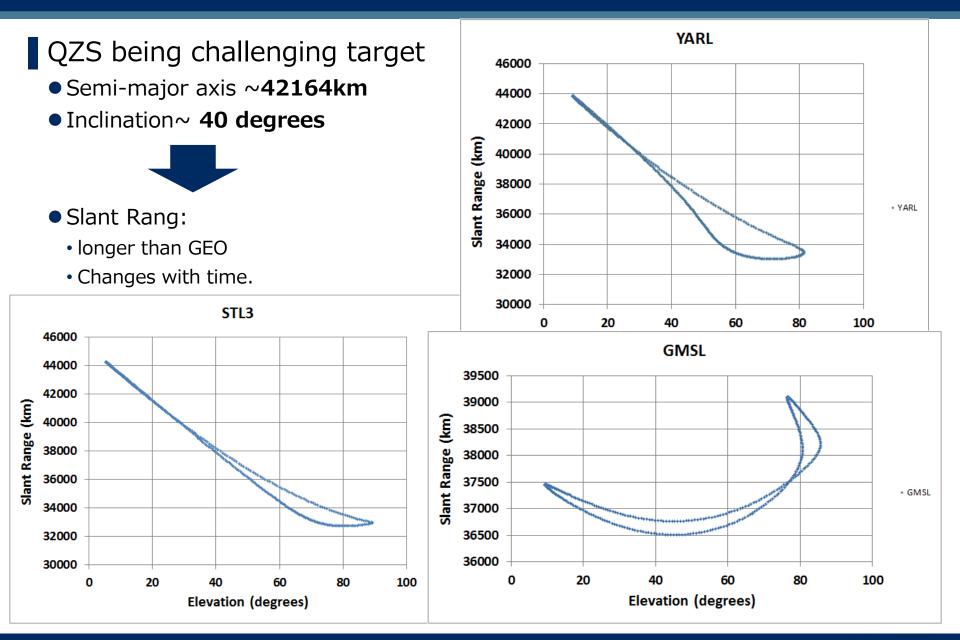
1. Requirements for on-board LRA

- \checkmark LRA shall be prism-array type.
- Wavelength of applied light shall be at 532nm. \checkmark
- Field of View shall be more than 10 degrees. \checkmark
- Reflection Coefficient (after 15 years on orbit) shall be more than 0.75.

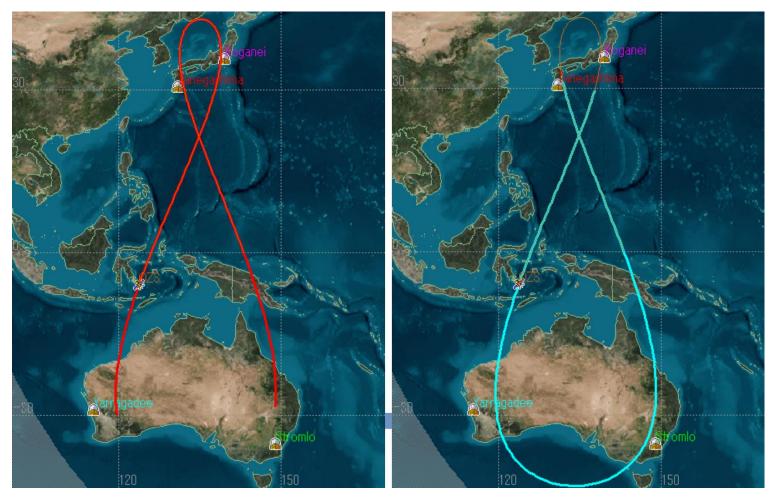
2. SLR tracking requirement

Three SLR stations shall be for **primary use**: (NOT an exclusive list. More data, the better!) \checkmark

SLR station		Nominal Fire Rate	
Tanegashima	GUTS	10 Hz	Koganei (KOGC) Changchun
Yarragadee	Moblas-5	1 Hz	(CHAL) • Shanghai
Mt. Stromlo	STR3	60 Hz	(SHA2) • Beijing (BEIL)


3. Operations Requirements

- Normal Point Time Span: 300sec •
- *Expected number of photo-electron detected in NP shall be >15* (with mean waiting time of 60 seconds; with clear sky condition; during night; with target SLR stations listed above; for satellite elevation more than 20 degrees.)


- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

QZSS as SLR Target is challenging

QZS being challenging target

• SLR stations that can track QZSS are limited.

From Dr. Nakamura's presentation for QZS-1

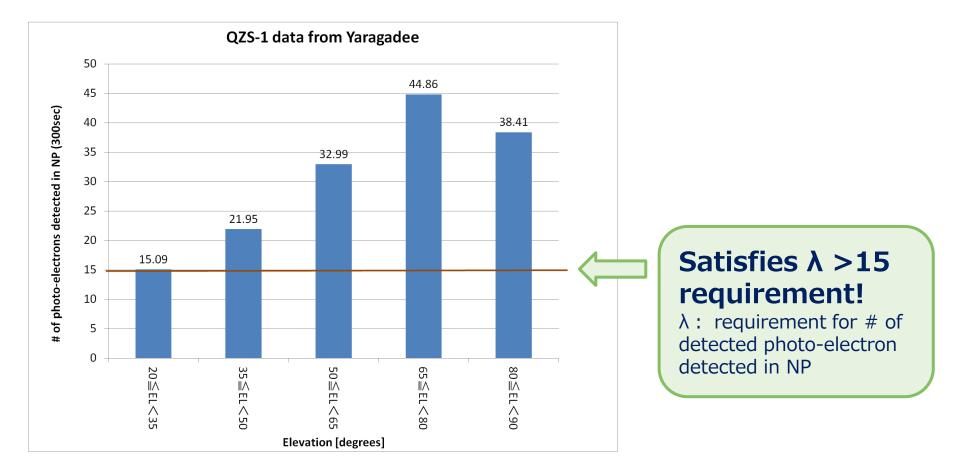
16

There are two stages of tracking planned.

1. IOT

- Initial Orbit Test for 2-3 months after launch (planned)
- Frequency of SLR: Every day preferred.
- Candidate SLR stations: ILRS stations located at western pacific ocean i.e., Western Pacific Laser Tracking Network (WPLTN)

2. Nominal Operation


- Purpose: To increase the accuracy of orbit determination during the nominal operation (i.e., 15+ years of on-orbit life)
- Frequency of SLR: Every day preferred.
- Candidate SLR stations: ILRS stations located at western pacific ocean i.e., Western Pacific Laser Tracking Network (WPLTN); including but **not limited** to Tanegashima, Yarragadee and Stromlo.

- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

Example of SLR data for QZS-1

- Data used: 2012 to 2014
- SLR station: Yarragadee (most difficult target station to satisfy requirement)

19

- 1. Role of SLR on QZSS Operation
- 2. Introduction to QZSS
- 3. SLR related requirements for QZSS
- 4. QZSS as a challenging target for SLR
- 5. Example of SLR data from QZS-1
- 6. LRA for QZS-2, 3 and 4

With successful tracking record with QZS-1, QZS-2, 3 and 4 will be equipped with the same LRA as QZS-1.

1 1 1	6
Specification	
LRA manufacturer	Honeywell Technology Solutions Inc.
Type of Array	Planar Array
Shape and size of each CCR	Circular 40.6 mm (1.60"), Height - 29.7 mm (1.17")
Dihedral angle offset	0.8 +/- 0.3 arcsec
Flatness of cube's surfaces	λ/10
Coating	Coated with MgF2 anti- reflective
Envelope	400mm x 400mm x 100mm
Number of CCR	56 (7 rows x 8 lines)

Orchestrating a brighter world

Backup Slides

Orbit (s) of QZSS

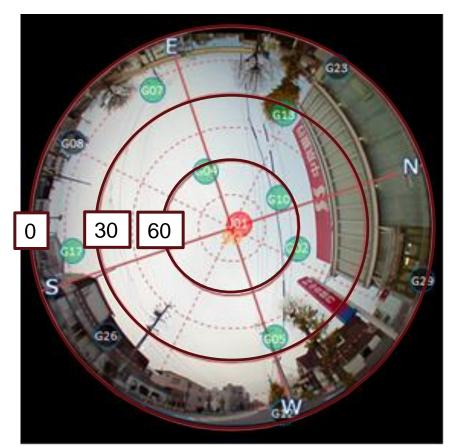
Quasi-Zenith Orbit Parameter and Tracking Range

Orbit Parameter	Nominal Allocation	Tracking Range		
Semimajor Axis (A)	42164km	-		
Eccentricity(e)	0.075	0.075±0.015		
Inclination (i)	40 degree	36 ~ 45 degree		
Argument of Perigee (w)	270 degree	270±2.5 degree		
RAAN(Ω)	Block I_Q: 117 degree Block II_Q: 117±130 degree			
Central Longitude ()	136 degree	130~140 degree		

RAAN: Right Ascension of the Ascending Node

Geosynchronous Orbit Parameter and Tracking Range

Orbit Parameter	Nominal Allocation	Tracking Range		
Longitude	E 127	127±0.1 degree		
Latitude	0	0±0.1 degree		



Benefit of QZSS for users

A Scene during the Experiment

J01: QZS-1 G##: GPS ## (Grays: Blocked)

2015 ILRS Workshop, Matera, Italy

Benefit of QZSS for users (2)

In Ginza, Tokyo

Need at least 4 satellites in sight.

- \times : GPS only
- ✓ : GPS+QZS

Positioning Signal of QZSS (as of Sept. 2015)

Positioning Signal of QZSS

Not only positioning complementation signal, but satellite orbit, time, and ionosphere correction information will be also transmitted as augment information.

			1 st Satellite	2 nd -4 th Satellite		
				QZO	QZO	GEO
L1C/A	1575.42 MHz	Positioning	complement GPS	0	0	0
L1C		Positioning	complement GPS	0	0	0
L1S		Augmentation (SLAS)		0	0	0
		Message Service		0	0	0
L2C	1227.60 MHz	Positioning	complement GPS	0	0	0
L5	1176.45 MHz	Positioning	complement GPS	0	0	0
L5S		Augmentation Experimental Use		_	0	0
L6	1278.75 MHz	Augmentation (CLAS)		Ο	0	0
L1Sb	1575.42	Augmentation	SBAS (*)	_	_	0

(*) SBAS Service will be available from the beginning of 2020's.

