SLR in the framework of the EGSIEM project

Andrea Maier¹, Andreja Sušnik¹, Daniel Arnold¹, Krzysztof Sośnica^{1,2}, Ulrich Meyer¹, Rolf Dach¹, Adrian Jäggi¹, Daniela Thaller³

¹ Astronomical Institute, University of Bern, Switzerland
² Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental and Life Sciences, Poland

 3 Federal Agency for Cartography and Geodesy, Frankfurt, Germany

2015 ILRS Technical Workshop

EGSIEM project overview

- European Gravity Service for Improved Emergency Management
- submitted in 2014 to the EO-1 Space Call of the Horizon 2020 Framework Program for Research and Innovation
- started on January 1, 2015
- three main objectives:
 - 1. deliver the best gravity products for applications in Earth and environmental science research
 - 2. reduce the latency and increase the temporal resolution of the gravity and therefore mass redistribution products
 - develop gravity-based indicators for extreme hydrological events and demonstrate their value for flood and drought forecasting and monitoring services

Deriving monthly gravity fields at AIUB (1)

Slide 3 of 14

Deriving monthly gravity fields at AIUB (2)

Slide 4 of 14

GNSS reprocessing campaign

- ongoing reprocessing campaign
- time span: 2002 to 2015
- GNSS products: orbits, Earth orientation parameters, clocks, etc.
- new Empirical CODE Orbit Model (ECOM) is used:

	Parameters estimated in		
	D	Y	В
Old ECOM	constant	constant	constant, 1-cpr
New ECOM	const., 2-cpr, (4-cpr)	constant	constant, 1-cpr
D satellite-Sun direction Y direction along the satellite's solar panels axes			

 $B\,\ldots$ completes the orthogonal right-handed system

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

SLR observations to GPS and GLONASS satellites:

• SLR observations to GPS and GLONASS satellites:

Astronomical Institute, University of Bern **AIUB**

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

• SLR observations to GPS and GLONASS satellites:

Andrea Maier: SLR in the framework of the EGSIEM project 26-30 Oct 2015

Astronomical Institute, University of Bern **AIUB**

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

• SLR observations to GPS and GLONASS satellites:

Slide 6 of 14

• SLR residuals w.r.t. microwave-based orbits:

o-c ... 'observed minus computed'

- observed quantity: satellite laser distance to satellite
- computed quantity: distance between station and microwave-based orbit
- no parameters are estimated \Rightarrow SLR residuals contain biases!

GNSS orbit validation (1)

• SLR residuals w.r.t. microwave-based orbits as a function of the elongation angle E^\prime

 eta_0 ... elevation of the Sun above the orbital plane

 Δu . . . difference between the argument of latitude of the satellite and the argument of latitude of the Sun

GNSS orbit validation (2)

 SLR residuals w.r.t. microwave-based GLONASS-M orbits for the time span 2003 to 2014 (old ECOM):

GNSS orbit validation (3)

• SLR residuals w.r.t. microwave-based GLONASS-M orbits for the time span 2003 to 2014 (new ECOM):

Astronomical Institute, University of Bern AIUB

Combined reference frame (1)

- current status: reference frame derived from GNSS data
- instead: reference frame derived from both GNSS and SLR data
- workflow to derive a combined reference frame:

• output of weekly solution: station coordinates, orbits, Earth rotation parameters, geocenter coordinates

Combined reference frame (2)

- issues with weekly solutions
 - range biases,
 - satellite antenna offsets, and
 - · laser retroreflector array offsets are not well determined

 \Rightarrow create multi-year solution and re-substitute range biases and offsets to generate improved weekly solutions

Gravity field coefficients from SLR (1)

- satellites to be analyzed:
 - LAGEOS 1/2
 - Ajisai, Stella, Starlette, Lares (LEOs)
- arc length:
 - 10 days for LAGEOS 1/2
 - 1 day for LEOs
- estimated arc parameters:
 - empirical parameters:
 - constant and 1/rev in along track for LAGEOS 1/2
 - constant and 1/rev in along track, 1/rev cross track for LEOs
 - pseudo-stochastic pulses:
 - 1/rev in along track for LEOs (none for LAGEOS)
- estimated global parameters:
 - gravity field coefficients up to degree/order ${\sim}6$
 - station coordinates
 - geocenter coordinates
 - Earth rotation parameters
 - range biases

Gravity field coefficients from SLR (2)

• C₂₀ (Earth's flattening):

Slide 14 of 14