

Relativistic analysis of an earth-satellite time transfer

O. Minazzoli¹, B. Chauvineau¹ & E. Samain²

1.OCA-ARTEMIS (UMR 6162) 2.OCA-GEMINI (UMR 6203)

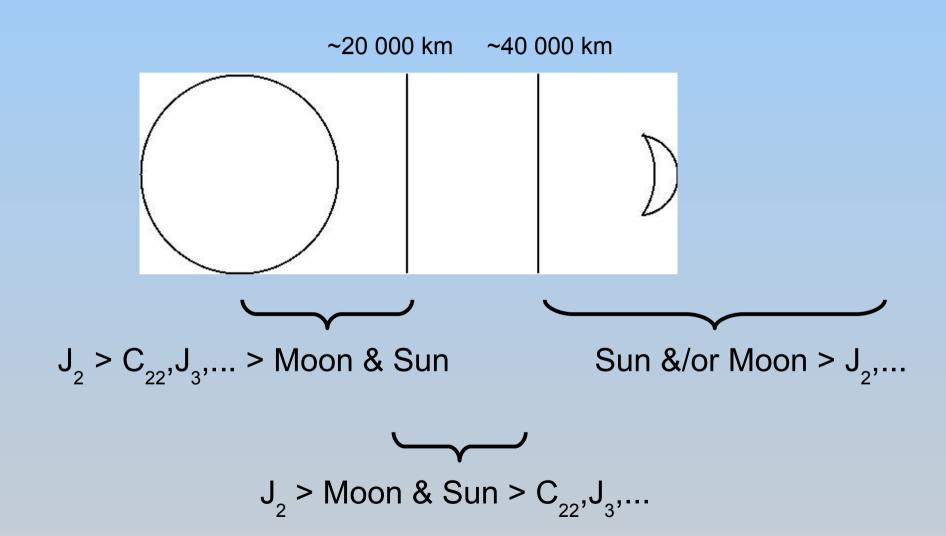
Context

Time transfer via laser links from earth to satellite for low orbit satellites

Possible applications: T2L2,ACES

<u>Aim</u>: Increase precision in **photon transfer** =>

incorporate the J₂ term in the relativistic description of the earth potential


Foreseeable future ??

Precision in time transfer ~10⁻¹⁴ s

Could be reached in a few years <=

Need hight frequency laser pulse

Which domain for which potential

Numerically ...

$$ds^{2} = \left(-1 + \frac{2U}{c^{2}} + \ldots\right)c^{2}dt^{2} + \left(1 + \frac{2U}{c^{2}} + \ldots\right)|d\vec{r}|^{2} + 2g_{0i}c\,dtdx^{i}$$

First relativistic order

-
$$J_2 \rightarrow 10^{-14}$$
 s (~1000 km altitude)

$$-J_{3}^{2},C_{22}... \rightarrow 10^{-16} \text{ s}$$

Higher relativistic order terms

- $g_{0i} \rightarrow 10^{-16}$ s (Lense-Thirring on light motion)

Conclusion

- Complete relativistic treatment of the time transfer is needed in order to fit the future data
- In foreseeable future, including the J₂ Earth potential term in such treatment will be necessary
- → We derived the complete formulae including the corresponding terms