

CNES Toulouse – France

P. Guillemot: System EngineerS. Leon: ProgramI. Petitbon: Project Manager

T2L2 Current Status

OCA –UMR Gemini Grasse – FRANCE

E. Samain: Prime Investigator **D.** Albanese: Optics F. Baumont: Time B. Chauvineau: Fond. Physics P. Exertier: Data Analysis O. Minazzoli: Fond. Physics JL. Oneto: time F. Para: Instrumentation J. Paris: Software F. Pierron: FTLRS J.M. Torre: Laser sations ILRS P. Vrancken: Test benches J. Weick : error - link Budget

Space segment T2L2 on Jason 2

- Millemetric sea altimetry
- Native instruments
 - » Altimeter : Poseïdon 3
 - » Water vapor measurement
 - » Orbitography: Doris, GPS, Laser
- Passenger instruments
 - » Radiation: Carmen 2, LPT
 - » Time Transfer by Laser Link: T2L2
- Orbit
 - » Altitude 1336 km, i = 66°, P = 6800 s
 - » Max distance in a common view mode : 6500 km
 - » Single pass: ~1000s
 - » Time interval between pass 2h < T < 14h
 - » 3 to 6 passes per day

T2L2 Space instrument Development plan

- B Phase: 09/2005 → 02/2006
- CD phases : 03/2006 → 12/06
- Performance tests: 01/07
- T2L2 integration on Jason 2: 05/2007
- Jason 2 launch: 06/08
- Exploitation: $06/2008 \longrightarrow 06/2010 \longrightarrow \dots 2013$

T2L2 Space Instrument Synoptic

- \Rightarrow Masse : 8 kg (electronic) + 1.1 kg (optic)
- \Rightarrow Power Consumption: 42 W
- $\Rightarrow Volume: 270x280x250 \text{ mm}^3 / / \text{ } \emptyset \text{ } 30x95 / / \text{ } \emptyset 62x100$

T2L2 External payload

- From Space: +/- 55° for both T2L2 detection and LRA
- From ground: 5° in elevation (no atmosphere uncertainty)

Electronic instrumentation Event timer & Non linear detection

Optics

Laser sations Requirements

- Wavelength : 532.1 +/- .5 nm
- Event timer connected to the clock
- Time tagging of the start pulses with an accuracy of 100 ps (OCA calibration campaign)
- Elevation: 5°
- Laser pulse Energy
 - » Min: 1 mJ σ_{θ} = 10 µrad
 - » Max: 1 J $\sigma_{\theta} = 5 \mu rad$
- Pulsewidth 10 ps up to 500 ps
- Mono pulse or semi train

T2L2 Scientific objectives Observation Campaigns

• T2L2 Time Transfer Validation

- » Time stability
- » Systematic noises
- MicroWave Time transfer comparison and Time Scale : TWSTFT and GPS
 - » Time scale calibration
 - » Microwaves performances
- Fondamental Physics
 - » Anisotropy of the speed of light
 - » Interplanetary One Way laser ranging demonstration
- DORIS
- 3 D localization LRO-LOLA & Interplanetary space craft
- Laser ranging Link budget

T2L2 Validation Colocation

- Time Transfer between stations located at the same place
- The link will use an unique clock at ground
 - » The noise of both the space clock and the ground clock will disapeared
 - » Systematical effects : the same geometry, the same atmosphere
- Observation Campaign
 - » France: OCA MeO and FTLRS
 - » Russia: Maidanack 1 & 2
 - » Germany : Potsdam 1 & 3
 - » Ukraine: Simeiz and Katzively

T2L2 Validation Common view – Ultra stable Clocks

- Time transfer in common view between ultra stable distant clocks
 - » Hydrogen Masers
 - » Atomic fountain
 - » Cesiums
 - » Optical clocks

T2L2 Validation Common view - Ultra stable Clocks

Country	Laser Station	Time & Freq	Clocks	link
France	Caussols OCA	OCA	FOM OP	Direct
France	Paris OP (FTLRS)	OP	FO1 &FO2	Direct
Germany	Wentzell IFAG	IFAG	H-M ; Cs ; Rb	Direct
Poland	Poznan AOS	AOS	H Maser ; Cs	Direct TBD
Switzerland	Zimmer. AIUB	Berne METAS	FO ; H-M; Cs	Fiber TBD
Austria	Gratz	TUG	TBD	Direct Fib.
Italy	Matera MLRO	MLRO	H-M	Direct
England	Herstmonceux	NERC	H-M 2009	Direct
Spain	San Fernado ROA	ROA	H-M ; Cs	Direct

T2L2 Validation Non common view: France – China

• Pass

- » Over 10 days : 29 passes
- » Time interval between pass : 606 s (5° elevation)

- Doris noise
 - $\approx \sigma_{\rm x}(600) = 300 \text{ ps}$

Dessee	Durée (sec)		Intervalle	
Passage	Grasse	Shanghai	(sec)	
1	1146	1041	563	
2	1029	1101	540	
3	1015	600	708	
4	1140	1118	540	
5	955	993	565	
6	1101	847	622	
7	1107	1146	531	
8	881	779	621	
9	1141	1003	574	
10	1051	1122	535	
11	824	218	823	
12	973	483	754	
13	1146	1098	546	
14	980	1038	554	
15	1078	778	645	
16	1121	1142	533	
17	905	867	597	
18	1132	959	587	
19	1072	1136	532	
20	840	506	709	
21	923	325	821	
22	1148	1073	553	
23	1005	1073	546	
24	1050	697	673	
25	1132	1133	536	
26	930	936	578	
27	1119	907	603	
28	1091	1143	531	
29	860	664	655	
Moyenne	1031 ±104	894 ±263	606 ±86	
Max.	1148	1146	823	
Min.	824	218	531	

T2L2 Validation Non common view: Grasse – Shangai

T2L2 Validation Non common view: Grasse – Shangai

T2L2 Validation Non common view: Grasse – Shangai

• Track the space clock with :

- » Maidanak (Russia)
- » Mendeleevo 2 (Russia)
- » Simeiz (Ukraine)
- » Katzively (Ukraine)
- » Riyadh (Arabia)

→ Equivalent to a common view transfer

T2L2 Validation Non common view: Europe – USA

• Time transfer between France and Grennbelt

» OCA – Greenbelt : dead time : 20 seconds @ 5 $^{\circ}$

Negligible degradation as compared to a common view transfer

Non common view GRASSE – Greenbelt (20 s)

MicroWave Time transfer comparison TWSTFT and GPS

- 4 european laboratories having both laser and TWSTFT - GPS
 - » France Caussols OCA
 - » Austria Gratz TUG
 - » Spain San Fernando ROA
 - » Poland Poznan AOS
- 2 mobile laser stations
 - » FTLRS (French)
 - » TROS1 (China)

2 mobile TWSTFT stations

- » TUG
- » TimeTech

TWSTFT and GPS Time transfer Calibration

• Determination of the delay between :

- » The instant materialized by the PPS signal at the reference location of the lab
- » The instant materialized by the laser pulse at the reference point of the station (axe crosses of the telescope mount)
- Calibration of the start time of the laser pulses
 - » Absolute accuracy: 100 ps
 - » Relative accuracy (long term time stability) : 10 ps
- Calibration campaign with an unique equipement (OCA):
 - » Reference event timer
 - » Single photon detector coupled with an optical fiber
- Each participating laser station will be calibrated defore or during the microwave comparison campaign

TWSTFT and GPS Calibration campaign

• A first 2 months campaign in june 2008 between :

- » OP via FTLRS
- » OCA (connected to Mobile Atomic fontain syrte)
- » TUG
- » ROA
- » AOS

• A second 2 months campaign in 2009 between :

- » China, Xian : National Time Service Center via TROS mobile station
- » OP connected to Mobile stations
- A permanant long term campaing between
 - » OCA
 - » TUG
 - » ROA
 - » AOS

Fondamental Physics Anisotropy of the speed of light δc/c

- Determination of the variation of c through different laser orientation propagation
- Common view observation campaign with 3 laser stations linked to an ultra stable clock (H Maser)
 - » England Herstmonceux
 - » France Grasse
 - » Italy Matera

Fondamental Physics Interplanetary one way laser ranging

- Comparison of the one laser ranging deduced from the time delivered by both the space and ground clocks with the classical two way laser raging
- Campaign
 - » During the whole mission
 - » Every station linked to an Maser or a Cesium Clock

DORIS

- Characterization of the onboard quartz oscillator DORIS
 - » Correlation between onboard radiation measurement (LPT and carmen) and frequency noise
 - » Observation campaign
 - Continuous campaign with every station linked to an H Maser or a Cesium Clock
 - Dedicated Campaign for the SAA : South Atlantic Anomaly
 - Argentina San Juan + H Maser
 - Guyane Kourou (FTLRS)
- One way laser ranging telemetry
 - » Fake echoes computation from the onboard dates
 - » One way laser ranging : Corner cubes signature cancellation
 - » Observation campaign
 - Every station linked to an H Maser or a Cesium Clock

3 D localization LRO-LOLA – Interplenatary missions

»OCA FOM

Link Budget

- The linear photo detection of the space instrument will permit to measure
 - » the energy density received for each laser pulse
 - Dynamic : 80 dB
 - Threshold : 0.1 fJ ; $S = 0.05 \text{ mm}^2$
 - » The solar flux retrodiffused by the earth
- Link budget validation
- Speckle contrast
- Observation campaign
 - » Laser station having calibrated laser beam (Gaussian shape and energy density)

Conclusions

- Flight model measurements:
 - » In accordance with specifications
- T2L2 is integrated on jason 2 since may 2007
- Jason 2 launch: June 2008

• Laser community

- » Up to now 15 laser stations are ready to run
- » Event timer upgrade
- » Calibration process for time scale comparison
- » installation of Mobile stations have to be enviosionned soon
- We need a large implication of laser stations for the succes of that project
- Many thanks to CNES for supporting the project