0.1 kHz in Zimmerwald

Werner Gurtner
Eugen Pop
Johannes Utzinger

Astronomisches Institut
Universität Bern, Schweiz

ILRS Fall Workshop 2007
Grasse
25-28 September 2007

Why a new Laser?

UNIVERSITÄT BERN

- Current laser
- 10 years of operation
- Some components are well-worn, difficult to replace
- Intensive maintenance
- Frequent adjustments
- Pulse length too long, unstable
- Difficult to track high satellites (energy budget)
- Ti:Sapphire: "Exotic" wavelengths: 423/846 nm
- Two-color operation: Infrared less accurate, but extended tracking possibilities

Main Questions:

- Nd:YAG
- Single color
- Kilo-Hertz $\quad \leftrightarrow \quad 100 \mathrm{~Hz}$
- (Flash lamps $\leftrightarrow \rightarrow$ Diode-pumped)
$\leftrightarrow \rightarrow$ Ti:Sapphire
$\leftrightarrow \quad$ Two-color system

Nd:YAG $\leftarrow \rightarrow$ Ti:Sapphire

- Transponder tracking \rightarrow Nd:YAG
- Energy budget \rightarrow (Nd:YAG)
- Background noise \rightarrow Nd:YAG
- New optical components \rightarrow Nd:YAG less expensive less sensitive
- Optical adaptations
- Two-color tracking
\rightarrow Ti:Sapphire
\rightarrow Ti:Sapphire

Single color $\leftarrow \rightarrow$ Two-color system $\quad \boldsymbol{u}^{b}$

- Cons
- User of dispersion was not successful
- More complicated system
- Pros
- Extension of ranging capabilities (low elevation, haze)
- Two rather independent measurement chains
- Detection of systematic errors

Kilo-Hertz $\leftrightarrow 100 \mathrm{~Hz}$

- Precision
- Accuracy
- Maintenance
- Transponders
- Price

Short pulse length Number of returns ($1 / / n$)
Calibration, timers, electronic components.
High correlation between
high-rate data.

- Tracking efficiency Total energy
- Target investigations kHz better suited

Diode-pumped laser
100 Hz probably better suited
not decisive

Decision

- 100 Hz system
- Nd:YAG
- Two-color ready
- Manufacturer: Thales

Oscillator

- Time-Bandwidth, Switzerland
- OEM custom version of a LYNX oscillator
- Passive mode locking
- Diode-pumped solid state
- 30 ps pulse length
- 100 MHz pulse rate
- Pointing stability <5 arcsec/C
- Long term power stability $<0.1 \%$ rms
- Sealed laser head \rightarrow allows reliable and maintenance-free operation (low operation costs)
- Air cooled (only)
- „True" turn-key system

Amplifiers

- One regenerative amplifier, one four-pass amplifier
- Diode-pumped solid state system
- Wavelengths
- Wavelength stability
- Pulse length
- Pulse length stability
- Pulse quality
- Pulse rate
- Pulse energy
- Energy stability (long term)
- Individual energy attenuation
- Pulse contrast
- Beam divergence at laser output
- Pointing stability
- Polarization
1064.14 and 532.07 nm $<0.05 \mathrm{~nm}$ $<=35 \mathrm{ps}(1064 \mathrm{~nm})$
< 10% for each colour
TEM 00; $\mathrm{M}^{2}<=1.2$
90-110 Hz
$>12 \mathrm{~mJ}$ (532 nm , expected)
< 5 \% (several months or between service intervals) 0 to 99 \%
< 1:200 for each color
$<50 \operatorname{arcsec}\left(1 / \mathrm{e}^{2}\right.$, full angle)
<30 arc sec circular

Additional features

- Average power (532 nm) > 100 * $12 \mathrm{~mJ} / \mathrm{sec}=1.2 \mathrm{~W}$
- Pulse period
- Period decimation
- Pulse synchronization
- Receiver protection
- Collision avoidance
- Transmitted energy
- Beam divergence at telescope output
- Two-color ready

Variable between 9 and 11 ms in steps of $10 \mu \mathrm{~s}$
Either in integer fractions or pulse-per-pulse (?)
First pulse synchronized to selectable UTC time
Rotating shutter Several options, realized by software
Variable by polarizer
> +- $2.5 \operatorname{arcsec}\left(1 / \mathrm{e}^{2}\right.$, adjustable)
Depending on availability of infrared receiver (1064 nm)

Realization

UNIVERSITÄT

- Laser ordered in April 2007
- Optics, FPGA (Graz), signal distribution (Deggendorf), ... ordered in summer 2007
- Delivery: Second half of October 2007 (expected)
- Implementation: Immediately afterwards...
- SLR system will be out of order during full implementation phase (no parallel operation with old laser possible)
- New (even smaller) range bias to be expected
- CCD system will remain operational

LRO mission support

- Pulse rate
- Either pulse decimation to some pulse rate $<28 \mathrm{~Hz}$, floating, e.g. 20 Hz
- Or
- generation of 111.982 Hz
- decimation by $4=27.995 \mathrm{~Hz}$
- occasional shifts to keep pulses in LRO window
- initial synchronization to first window
- Wavelength
- Pulse energy
- Beam divergence adjustable)
532.07 nm (expected)
\rightarrow about 50 percent loss
$<12 \mathrm{~mJ}$ per pulse, adjustable
$>+-2.5 \operatorname{arcsec}\left(1 / \mathrm{e}^{2}\right.$,

