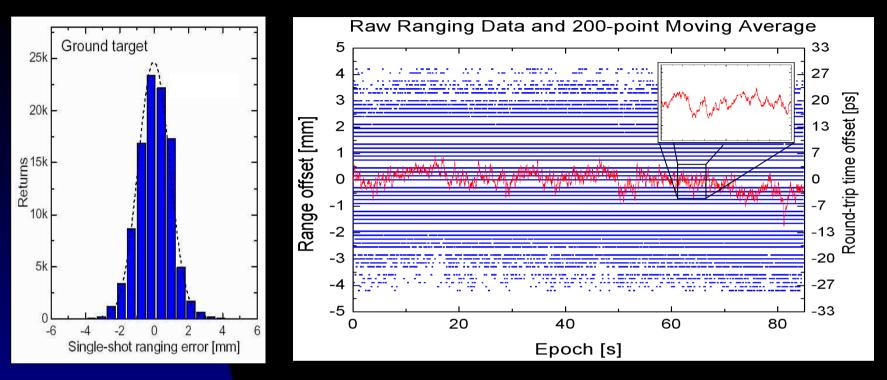
Atmospheric seeing studies based on kHz millimeter SLR in Graz

Lukas Kral, Ivan Prochazka*

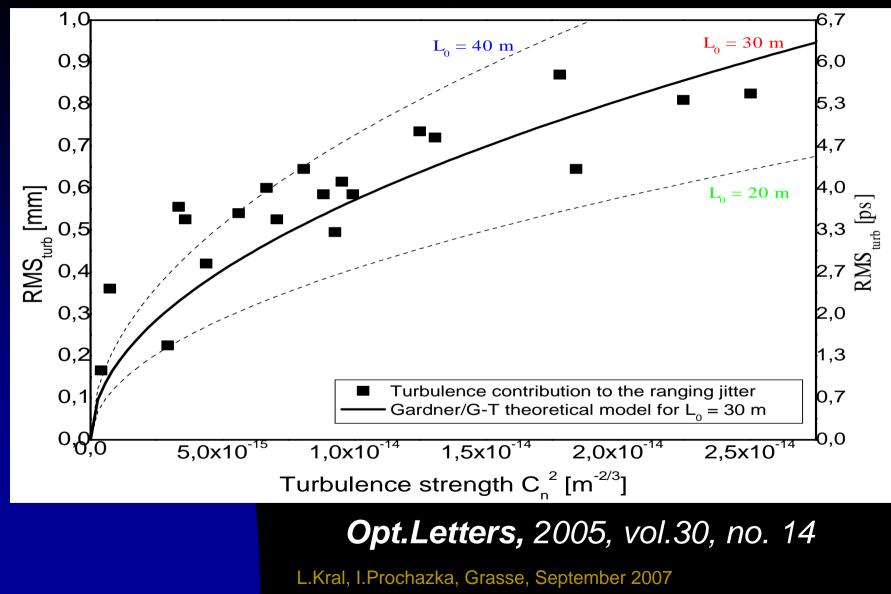

presented at ILRS Fall Meeting 2007, Grasse, France, September 25-27, 2007

Czech Technical University in Prague, Prague, Czech Republic

Goal & Philosophy

- Optical turbulence in the atmosphere has a measurable influence on the satellite laser ranging (SLR) data
- (sub)mm precision and 2kHz rep.rate opens new possibilities in seeing monitoring

Ground target laser ranging, 4 km, Graz Atmospheric fluctuations resolving



- the atmospheric turbulence-induced contribution to the overall jitter determined for the first time
- instrumental
- atmospheric

0.9 mm rms 0.6 mm rms => 1.1 mm total

Ranging Jitter vs. Turbulence Strength

4 km horizontal path, Graz

Turbulence influence on the SLR data

Air refractive index turbulent fluctuations -> laser ranging jitter

 Gardner (1976) derived analytical formula for prediction of the turbulence-induced ranging errors RMS:

$$RMS = 5.1 L_0^{5/6} \sqrt{\int_0^L C_n^2(\xi) d\xi}$$

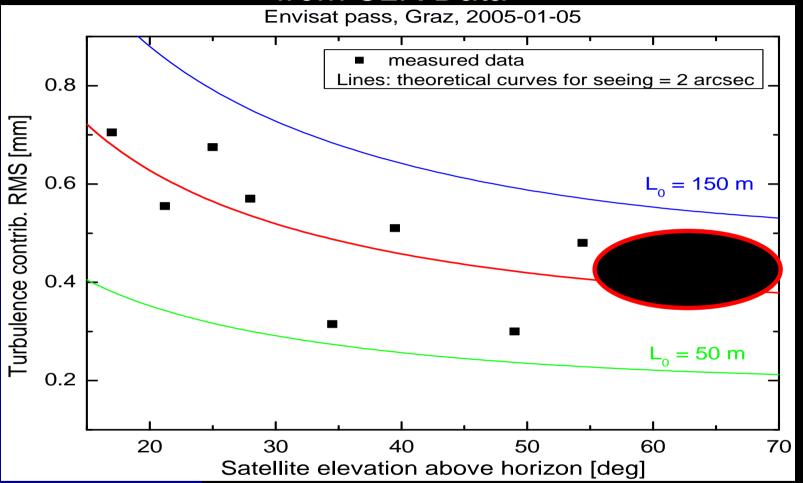
Satellite

Laser station

 L_{o} outer scale of turbulence (~100 m ??) $C_{n}^{2}(\xi)$... turbulence strength along the beam path L target distance

GARDNER, C. S. *Effects of random path fluctuations on the accuracy of laser ranging systems*. Applied Optics, 1976, vol. 15, no. 10, p. 2539–2545.

Outer Scale Estimation from SLR Data


- Gardner -> relation between:
 - Turbulence-induced laser ranging jitter RMS (σ)
 - Turbulence outer scale (L_0)
 - Turbulence strength (seeing at zenith ... ε)
 - Wavelength of seeing observation (λ)
 - Elevation above horizon (α)

$$\sigma = 1.28 L_0^{5/6} \lambda^{1/6} \varepsilon^{5/6} (\sin \alpha)^{-1/2}$$

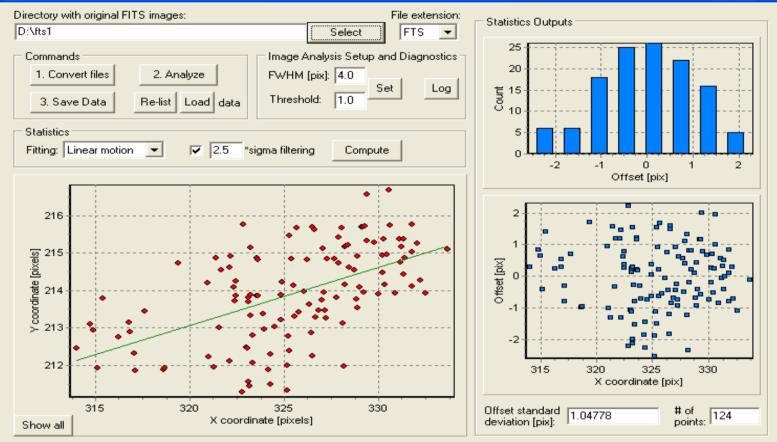
(for slant path to space)

- The outer scale L₀ is key to measure, and still not well understood
- By measurement of seeing ε (by a telescope) together with determination of the laser ranging jitter σ from ordinary SLR data, the outer scale L₀ can be determined
- High-repetition, high precision laser system required (2 kHz, 1 mm RMS)

Determination of Outer Scale Parameter L₀ from SLR Data

Presented at the 36th COSPAR General Assembly, Beijing, China, July 2006

Compact Seeing Monitor



- Small telescope (D = 70 mm, f = 350 mm) low cost CCD sensor (200+100 USD)
- Stellar image motion amplitude is measured from short exposures (< 10 ms)
- Telescope must be perfectly stable
- Result: integral turbulence strength on
 - ◆ Slant path to space (star) nighttime only
 - Horizontal path (lamp) nighttime/daytime

Seeing Monitor data processing SW package

龙 Seeing Monitor v. 0.5

Polar star image position fluctuations, no tracking

4 arc sec

Seeing

7 arc sec horizontal L.Kral, I.Prochazka, Grasse, September 2007

Polaris

Results - Summary

- Atmospheric turbulence seeing is a factor limiting the SLR
 - precision on the (sub) millimeter level
 - energy budget link for arc second pointing
- Seeing measurement together with high repetition SLR data analysis is capable to determine the turbulence outer scale (L₀)
- Seeing (turbulence strength) can be monitored even with low-cost telescopes and image sensors

Conclusion

- the new fundamental phenomenon has been identified : "image" seeing versus "signal" seeing < 1 µm > 100 µm phase velocity group velocity
- different seeing models are required for those two
- critical consequences in
 - free space optical communication
 - astronomy / coherent, interference.../
 - others ..?
- => 2kHz millimeter SLR is a powerfull tool to accomplish, among others, a lot of optical science
- => GO FOR kHz SLR