Progress on Systematic Effects in Stanford counters used for Laser Ranging Observations

Graham Appleby and Philip Gibbs

Space Geodesy Facility, Herstmonceux, UK

ILRS Fall Workshop Grasse, 26th Sept 2007

Tests on counter linearity

- Relative to a 'perfect' time-of-flight counter, what are the characteristics of the counters in common use over the last 15+ years?
- Work was started by a careful examination of *Stanford* counters in use at Herstmonceux, relative to a high-spec, ps-level event timer.
- Counters from Potsdam and Boroweic also tested at Herstmonceux.
- Studied effects at LAGEOS and at local calibration target distances.
- This work corrects results reported at Canberra with the wrong sign and adds results from additional stations' counters.

Herstmonceux counters

- A ps-level event timer (HET) has been built in-house from *Thales* clock units;
- A prerequisite for the upcoming kHz operations.
- Extensive use of HET to calibrate existing cluster of *Stanford* counters prior to routine use of HET;
- In particular we wish to **backcalibrate** data from 1994-present.

Primary calibration target at Hx

Comparisons between HxET and the Stanford counters for calibration boards' distances; Behaviour very similar to spec; Errors up to 100ps (15mm), with some systematic detailed structure

Summary of effect on range measurements at Herstmonceux (1994-2007)

- The non-linearity of the Stanfords:
- imparts an average of ~-5.5±2mm error onto the observed <u>calibration</u> range;
 - The calibrations are too short;
 - Hence calibrated satellite ranges are **too long by 5.5mm**.
- Value is dependent on the target range, electronic delays and on the particular Stanford;
 - Hence the inherent 2mm uncertainty in this correction

Summary of effect on range measurements at Herstmonceux (1994-2002)

- At distance of **LAGEOS**, range error is ~-8±2mm;
 - observed raw LAGEOS ranges are too short
- So total range error is:
 - $+ 5.5 8.0 = -2.5 \pm 3$ mm
 - i.e. need to add 2.5mm to LAGEOS ranges
- This correction applies to the period 1994 October 1 to 2002 January 31

Summary of effect on range measurements at Herstmonceux (2002-2007)

- From 2002 February 1 the satellite-range-dependent correction has been applied on-site
- The calibration error has **not been applied**
- So for the period 2002 February 1- 2007 February 10:
 - Subtract 5.5mm from all satellite ranges from Herstmonceux
- From 2007 February 11, range error for all satellites is ~zero, using new event timer

Effect present in other ILRS stations?

Tests at Hx with Potsdam (7836) and Borowiec counters – at calibration ranges

Tests at Hx with Potsdam (7836) and Borowiec counters – at calibration and LAGEOS ranges

- We find similar behaviour at 'calibration' ranges between the two counters and when compared with Stanford manual and with Hx counters;
- For Potsdam 7836 for 1992 May onwards, add 3mm to LAGEOS ranges;
- For Potsdam 7841, estimate that between 2001 July and 2004 February **add 5mm** to LAGEOS ranges (counter no longer available to test);
- For Borowiec for 2002 May onwards **subtract 9mm** from LAGEOS ranges.

	Summary				
Station	Dates	Range Correction (mm)			
7840 HERL	1994/10/01 – 2002/01/31	+2.5			
7840 HERL	2002/02/01- 2007/02/10	-5.5			
7836 POTS	1992/05/01 ->	+3.0			
7841 POTS	2001/07/01 – 2004/02/28	+5			
7811 BORL	2002/05/01 ->	-9			

Effect present in other ILRS stations?

- At this stage, we confine our investigation to Stanford counters;
 - Our limited experience with *e.g.* HP timers suggests they do not have problem – used by NASA network
- We have made 'worst case' estimates of calibration error and total range error at LAGEOS for all 'Stanford stations':
- We take target range from Log files and calibration values from ILRS NP headers;
- Thus estimate *tof* for calibration ranging, hence Stanford error.
- Use worst-case estimate at LAGEOS range.
- Error span is -9 to +11mm, frequent error +10mm
- Uncertainty in these estimates could be up to ~5mm

Worse-case error estimates (mm)

Station		ID	Calibration error	LAGEOS error	Total error
BEIL	Beijing	7249	-12	+10	- 2
BORL	Borowiec	7811	- 9	+ 0 meas	- 9
BREF	Brest	7604	-10	+10	0
GLSV	Kiev	1824	- 6	+10	+ 4
HELW	Helwan	7831	0	+10	+10
KTZL	Katzively, Ukraine	1893	0	+10	+10
KUNL	Kunming, China	7820	- 9	+10	+ 1
РОТЗ	Potsdam	7841	0	+ 5	+ 5
POTL	Potsdam	7836	0	+ 3 meas	+ 3
SFEL	San Fernando	7824	0	+ 8 meas	+ 8
SISL	Simosato, Japan	7838	+1	+10	+11
SJUL	San Juan	7406	0	+10	+10
WUHL	Wuhan	7231	0	+10	+10
ZIML	Zimmerwald	7810	-3	+ 8 appl	- 3
Closed sites					
GRSL	Grasse	7835	- 1	10	11

meas = measured on particular Stanford counters; **appl** = applied at station

Comments

- We emphasise the preliminary nature of this table;
 The plots of the 3 Herstmonceux Stanford
 - counters show large inter-counter differences;
- Calibration of each stations' counter(s) is valuable but not absolute still uncertainty in 'zero point'.
- Interested to get other examples;
- Particularly important to look at San Juan, San Fernando

Summary/outlook

- We also note that:
- The stations are a subset of the full ILRS network, but do contain some core sites;
- Counter characteristics remain static over time;
- Several of the stations have already upgraded to higher-quality counters.