^b UNIVERSITÄT BERN

b

11,

Automation: Prerequisites

Werner Gurtner

Astronomisches Institut Universität Bern, Schweiz

ILRS Fall Workshop 2007

Grasse

25-28 September 2007

Astronomisches Institut der Universität Bern

^b UNIVERSITÄT BERN

- All necessary functions are basically controllable through/by computers, including
 - Power-up of the system (telescope, laser, dome, ...)
 - Emergency procedures
 - Controlled shut–down of the system
- Minimum monitoring of the weather (esp. precipitation → emergency closing of the dome)
- Security and safety procedures according to local requirements

Presentation based on experiences with the Zimmerwald system

 \sim

Power-up

^b UNIVERSITÄT BERN

- Telescope
 - Initialization of the angle encoders
 - Protection caps
 - • •
 - Laser
 - Power-up sequence: YAG pump laser, cooling, Ti:Sapphire laser, auxiliary equipment
 - Adjustment of doubling crystal, delays
 - Safety shutters
- Auxiliary computers (PCs) and devices (aircraft detection radar, receivers, rotating shutter, [event timers],...)

- b UNIVERSITÄT BERN
- Fully automated management of the prediction generation
- Short update cycle (hours) to account for subdaily CPFs and maneuvers
- Management of restricted satellites
 - Go-nogo flag file
 - Pass segment lists
- (Time biases)

b UNIVERSITÄT BERN

h

- Session definition
 - Determine start- and stop-times manually according to pass list
 - Avoid interrupting low satellites passes
 - Batches of 1–3 hours
 - Several batches at a time
 - Mount Stromlo (1): 7/24 uninterrupted tracking
 - Submit batches
 - Interactively
 - Command line

auto_slr 12:25 14:05 wg sms auto_slr 14:10 16:00 wg sms

Wap page (mobile phone)

LO

Pass scheduling within a session

^b UNIVERSITÄT BERN

- Automated, according to simplified priority lists
- Takes into account:
 - Actual horizon
 - Sun interference
- Inserts 3-min calibration blocks at low priority and every 30-50 minutes
- Could be defined beforehand (automatically or manually)
- Include cloud cover information? Suitable cloud mapper available?
- Feedback regarding tracking success?

b UNIVERSITÄT BERN

- "Track detection" or "echo identification" or "signal/noise separation" by
 - Histogramming
 - Majority voting

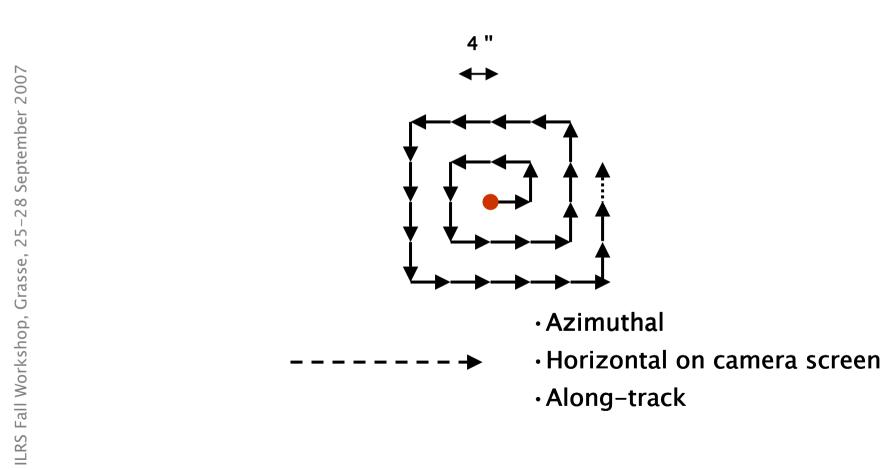
using

- Residuals w/r to predictions ("observed predicted")
- Time biases w/r to predictions (range residuals expressed as time biases)
- Combination of the two
- Automated adjustment (shift/size reduction) of the range gate window upon successful acquisition
- → Paper by Matthew Wilkinson

Satellite acquisition: Search procedures **7**],

> UNIVERSITÄT BERN

b


- Pointing corrections to account for
 - Telescope / laser beam misalignments
 - Prediction errors (mainly along track)
- Search algorithmes
 - Circular spiraling around predicted direction
 - Elliptic spiraling (elongated in along-track direction)
 - Along-track only
- Adjustment of the range gate according to alongtrack offset
- Step size and search width depending on
 - Satellite (e.g., prediction accuracy)
 - Divergence
 - Day time

 ∞ Folie

Search pattern during acquisition

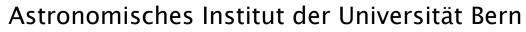
^b UNIVERSITÄT BERN

Folie 9

Astronomisches Institut der Universität Bern

BERN

- Use range residuals or (better) time biases to continually reposition range gate
 - Maintain optimal tracking by
 - Maximizing return rate (folded with single photon regime!)
 → empirical small corrections in all directions
 - Using quadrant photo diode ? (SLR 2000)
 - Real-time update of the predictions to improve *reacquisition*:
 - Use time bias to improve initial position of range gate
 - Use time bias to improve initial pointing direction (for large time biases)



Safety and Emergency Procedures

^b UNIVERSITÄT BERN

- Watch dog program
 - Checks rain detector
 - Checks for tracking program crash or time out
 - Closes dome, stops tracking program
 - Sends alert to operator per SMS or calls phone number in case of abnormal conditions
- Motion detector in dome
 - During laser tracking in unattended mode: Stops laser pulse generation
 - Interrupts dome closing
- Aircraft detection
 - Small radar parallel to telescope
 - Air traffic control data. Aircraft positions every few seconds

Folie 11

AIUB

^D UNIVERSITÄT BERN

- Moves telescope to park position
- Verifies that dome is closed
- Powers down laser if requested
- Sends SMS to operator if requested

12

^b UNIVERSITÄT BERN

- Automatic (night only, day and night?)
 - Apply calibration values
 - Noise removal
 - Normal point generation
 - Quick look format generation
 - Submission per e-mail to data center
- Various plausibility checks
 - Calibration RMS
 - Observation RMS (satellite-dependent baseline)
 - Number of normal points
 - Number of observations within normal points
 - Tight conditions: Do not submit questionable passes
- Reporting

UNIVERSITÄT BERN

- A few hours per day unattended operation
- A certain percentage of interactive operation actually run in automatic mode ("accoustic supervision")
- Some course statistics don't show significant differences in performance (either way...)
- Satellite acquisition may be faster in manual mode
- But: Automatic mode does not miss satellites and does not get tired...
- Some hours per month may be lost because of system crashes during unattended operation
- Weather conditions are a limiting factor: No cloud mapper available

