Towards INPOP07 Adjustments to Lunar Laser Ranging data

Manche H., Bouquillon S., Fienga A., Francou G., Laskar J., Gastineau M.

ILRS fall workshop 2007 September, 25

INPOP

Planetary Numerical Integration of the Paris Observatory
•motion the planets, Moon, Sun and 300 asteroids
•librations of the Moon
•orientation of the Earth

INPOP05: « copy » of DE405 (model + initial conditions and parameters) INPOP06: improvement of the dynamical model (asteroids, Earth orientation)

+ fitted to planetary observations (Agnès Fienga)

+ fitted to the Earth-Moon distance of DE405

INPOP07: fitted directly to LLR data

$$\Delta T_{a} = \frac{\left\|\overrightarrow{BM_{2}} + \overrightarrow{M_{2}R_{2}} - \left(\overrightarrow{BE_{1}} + \overrightarrow{E_{1}S_{1}}\right)\right\|}{c} + \Delta T_{GR} + \Delta T_{atm}$$

- B: Solar System Barycenter (origin of the reference frame)
- E: center of mass of the Earth
- M: center of mass of the Moon
- S: station
- R: reflector

$$\Delta T_{a} = \frac{\left\| \overrightarrow{BM_{2}} + \overrightarrow{M_{2}R_{2}} - \left(\overrightarrow{BE_{1}} + \overrightarrow{E_{1}S_{1}} \right) \right\|}{C} + \Delta T_{GR} + \Delta T_{atm}$$

$$INPOP(t_{2}) INPOP(t_{1})$$

B: Solar System Barycenter (origin of the reference frame)

- E: center of mass of the Earth
- M: center of mass of the Moon
- S: station
- R: reflector

B: Solar System Barycenter (origin of the reference frame)

E: center of mass of the Earth

M: center of mass of the Moon

S: station

R: reflector

$$\Delta T_{a} = \frac{\left\| \overrightarrow{BM_{2}} + \overrightarrow{M_{2}R_{2}} - \left(\overrightarrow{BE_{1}} + \overrightarrow{E_{1}S_{1}} \right) \right\|}{c} + \Delta T_{GR} + \Delta T_{atm}$$
IERS Conventions 2003

•Position of the station (ITRF2000)

•Displacement due to the deformation of the Earth:

•Plate tectonic

• Solid tides raised by Sun and Moon (V. Dehant)

• Polar tide

• Atmospheric loading

Ocean loading

•Transformation from GTRF to GCRF (CIP + C04 EOP series)

•Transformation from GCRF to BCRF

$$\Delta T_{a} = \frac{\left\| \overrightarrow{BM_{2}} + \overrightarrow{M_{2}R_{2}} - \left(\overrightarrow{BE_{1}} + \overrightarrow{E_{1}S_{1}} \right) \right\|}{c} + \Delta T_{GR} + \Delta T_{atm}$$

Williams & al., 1996

•relative positions of Sun, station and reflector

•relative positions of Earth, station and reflector

•Post newtonian parameter γ

$$\Delta T_{a} = \frac{\left\|\overrightarrow{BM_{2}} + \overrightarrow{M_{2}R_{2}} - \left(\overrightarrow{BE_{1}} + \overrightarrow{E_{1}S_{1}}\right)\right\|}{c} + \Delta T_{GR} + \Delta T_{atm}$$
Marini & Murray, 1973
•position of the station (ϕ ,H)
•true elevation of the reflector
•meteorological conditions (P,T, %)
•laser wavelength

by reflector

Grasse data, from 1988 to 2005 (8441 observations)

by reflector, before and after adjustments

(positions of reflectors and Grasse station)

(best solution, positions of reflectors fitted)

Grasse data from 1987 to 2005

INPOP07 (work in progress)

Adjustments:

•Selenocentric positions of reflectors (12)

•Geocentric position of the station (3)

•Initial conditions for the Earth-Moon vector (6)

•Initial conditions for libration angles (6)

•Time delays (3), lunar Love numbers (3) and potential coefficients (18), C/MR², offset

 \rightarrow 53 parameters

Fit only on Grasse data from 1987 to 2005

all Grasse data from 1987 to 2005

outliers > 3σ rejected (179/8441)

 $\sigma = 4,64$ cm

Projection on Mac Donald data from 1969 to 1985

 $\sigma = 42 \text{ cm}$

Projection on Mac Donald data from 1988 to 2006

Projection on Mac Donald data from 1988 to 2006

Projection on Mac Donald data from 1988 to 2006

