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 Abstract. The ring retroreflector array (RRA) consisting of “double-spot” corner-cube reflectors 
(CCRs) with a special coating of reflecting surfaces is considered. The error of distance 
measurement caused by both the laser pulse delay in the CCR and its spatial position (CCRs 
configuration) is studied. It is shown that the ring RRA, formed by the CCR with a double-spot 
radiation pattern, allows the distance measurement error to be essentially reduced. 
  
1. Introduction  

At present the international network of laser stations makes use mainly of the laser range 
finders operating in the so-called single-electron mode, the pulse repetition rate being able to 
achieve 10 kHz [1 – 5]. This fact means that the system is able to receive not greater than one 
photon of reflected radiation from each pulse of the laser. Provided that the small interference and 
quantum effects are neglected, the given photon comes from a certain CCR of the array. Since in 
the general case the CCRs in the RRA are located at different distances from the receiver, the 
distances being dependent on the light incidence angle, the times of arrival of different signal 
photons do not coincide.  

In the reception path of the laser range finder the signal photoelectrons from the collection of 
received pulses are ‘stored’ in the similar temporal cells with the time shift of the pulses taken into 
account. A collection of photoelectrons stored during the measurement time that includes more than 
a thousand of pulses, forms the response continuous signal with the measured parameters, namely, 
the position of the so-called centre of gravity (mathematical expectation) on the time axis, duration 
[root-mean-square (RMS) deviation], etc.  

The main goal of ranging is to determine the distance to the space craft (SC) centre of gravity 
by analyzing and processing the obtained signal. For this purpose it is necessary to take into account 
the delay of the laser pulse in the CCR, the shape distortion and centre of gravity displacement of 
the response pulse, as well as the refraction correction. The goal of the present work is to analyze 
the precision characteristics of the ring retroreflector array (RRA). The specific feature of these 
systems is that the CCRs are placed within a ring, the central part of the RRA being free of reflec-
tors. Provided that the specially designed reflectors are used, the RRA allows reduction of the 
ranging error. 
 
2. Correction of systematic and random errors of the pulse propagation time measurements, 
caused by the size and configuration of the RS  

Let us consider the errors caused by the joint operation of CCRs in the RA. When a symmetric 
probe pulse is reflected from the RA in the general case the pulse is elongated, together with the 
distortion of its symmetry and the shift of its centre of gravity [4, 5]. We restrict our studies to three 
types of plane symmetric RAs, namely, the rectangular array, the ring RA with uncoated CCRs [6], 
and the RRA with the so-called double-spot CCR of increased size (Fig. 1).  

Let us compare the distortions of the signal by these RAs in application to the satellite-based 
laser rangers, in which the single-electron mode of response pulse reception is used. Let us carry out 
approximate analysis, assuming that a single CCR does not distort the laser pulse, but only delays it, 
and the pulses reflected from CCRs are incoherent, i.e., their intensities are additive without taking 
the phase relations into account. In this case it is necessary to account only for the individual 
displacements of the pulse along the temporal axis, introduced by each CCR. Assume that the zero 
individual displacement is attributed to the pulse reflected from the CCR located in the array centre 
of symmetry.  
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We define the coordinate system xyz with the origin at the symmetry centre of the RA, the 
axes x and y lying in the plane that passes through the vortexes 𝑆𝑖  of all CCRs, and the axis z 
directed perpendicular to this plane (see Fig. 1). For the ring RA we will also use the polar 
coordinate system (r, ψ). 

Each CCR in both cases is characterized by the vector r lying in the plane and directed from 
the origin to point 𝑆𝑖. The pulse delay time for the given CCR (with the sign both plus and minus) is 
determined by the projection of r onto the sight line, i.e., the vector R directed from the laser 
transducer to the centre of the RA symmetry. Let us define this vector in the system xyz by the 
angles θi  (the angle of incidence) and φ (the azimuthal angle). Let us denote by αi  the angle 
between the vectors 𝒓𝒊 (𝑟𝑥, 𝑟𝑦, 0) and R(sinθ cosφ, sinθ sinφ, cosθ), then the projection of 𝒓𝒊  onto R 
expressed as |𝑟𝑖  |cosαi , = 𝑟𝑥sinθ cosφ + 𝑟𝑦 sinθ sinφ, and the corresponding time delay is ∆τi= 
|𝑟𝑖 |cosαi /c. 

 
  

 
 

Figure 1. Types of reflector systems: (a) planar rectangular array, (b) ring retroreflector array 
formed by uncoated CCRs, and (c) the RA consisting of double-spot CCRs. It is shown how the 

radiation patterns for each CCR are oriented. 
 

Consider first the plane array consisting of 117 CCRs, 13 rows parallel to the x axis and 9 
rows parallel to the y axis. Each CCR is labeled by two subscripts, characterizing its location in the 
panel, m along the x axis and n along the y axis. The zero values of x and y correspond to the CCR 
located in the array centre. Let the distance d between points 𝑆𝑖 of the CCR equal, e.g., 50 mm 
(similar along the axes x and y). Then for the time delay of the pulse, reflected from the CCR with 
the coordinates m, n,  we get the following expression:  
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Here h  - the CCR’s height; n  - index of refraction; θ  - incident angle. 

Using Eqn (1), let us determine the intensity of a single reflected laser pulse in the form of the 
Gaussian function with the width τ2  at the level of 1/e of the maximal value  
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The total reflected pulse is expressed as the sum of all 𝐼𝑚𝑛(t):  
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The result of summation is shown in Fig. 2 for different values of the angles φ and θ and for 
different duration of the pulses τ2 . If the projection of the laser beam at the array is not parallel to 
the axis x or y (φ ≠0, 90°), then for a short (e.g., 1 ps) incident pulse the reflected pulse has the 
shape of a trapezium. In the opposite (parallel) case the pulse is rectangular. 
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Figure 2. Broadening of Gaussian pulses at different values of τ2  and φ: θ  = (1) 5°, (2) 10° and 
(3)15°. 

 
The broadening of the incident pulse leads to smoothening of this shape. The shortening of the 

incident pulse duration leads to modulation of the reflected pulse, caused by the effect of individual 
CCRs of the array. The centers of gravity of all curves possess similar shift along the temporal axis 
due to the pulse delay in a single CCR. Therefore, ideally the array size and the incident ray 
azimuth do not give rise of ranging error. It is necessary to take only the systematic error correction 
into account. 

Now consider the RRA consisting of three rows of CCRs with uncoated faces. As is known, in 
the case of total internal reflection of light from the CCR faces the diffraction pattern of the 
reflected radiation in the far zone consists of one central and six peripheral spots. By special turn of 
each CCR in the plane of the array one can obtain the intensity ring, formed by the lateral spots of 
each CCR. Since the diffraction pattern of the RRS is produced by all CCRs, the photons, reflected 
from all CCRs, arrive at the receiver. Let the RRS consist of three rows of CCRs, 36 pieces in each 
(see Fig. 2b), where n is the number of the CCR in the ring (n = 0, 1, . . . , 35); m is the number of 
the row (m = 0, 1, 2); and R is the radius of the RRS. Taking the ring symmetry of the RRS into 
account, one can put φ = 0 without any loss of generality.  

The for the time delay of the pulse reflected from the CCR with the subscripts m and n we get 
the expression it is presented in Fig. 3 for different values of the incidence angle θ and durations of 
the initial pulses 50 and 100 ps at R = 230 mm and d = 40 mm.  
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The total reflected pulse in this case is found from the expression  
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Figure 3. Broadening of Gaussian pulses at different values of τ2 ; θ = (1) 5°, (2) 10° and (3) 15°. 
it is presented in Fig. 3 for different values of the incidence angle θ and durations of the initial 
pulses 50 and 100 ps at R = 230 mm and d = 40 mm. 

 
From Figs 2 and 3 it follows that the centre of gravity of the distribution of the response pulse 

arrival times is shifted only by the value equal to the delay of the pulse in a single CCR. If the 
number of responses is large enough, then the mean time of photoelectron appearance in the 
receiving tract of the laser ranger coincides with the centre of gravity of the response pulse. In other 
words, the systematic error of measurements (temporal shift) caused by the dimensions of the panel 
equals zero, and the random error is equal to the root mean square duration of the response pulse. 
Conservation of the measurement accuracy requires an appropriate increase in the repetition rate of 
probe pulses. The RMS obtained using the normal point appear to be √𝑁 times smaller.  

Thus, in the single-electron detection mode with the number of measurements N > 100 the 
systematic component of the range measurement error correction loses the dependence on the 
dimensions of the symmetric RA, but the required accuracy can be achieved only by averaging 
multiple measurements. Practically, due to the influence of external factors (e.g., weather 
conditions) the number of measurements may be only 10 – 20, and then the RMS of a single 
measurement becomes important. 

 
3. Ring retroreflector array, consisting of double-spot CCRs of increased size  

Consider the problem of reducing the single measurement random error upon an increase in 
the energy of the reflected signal in the direction of the receiver of the laser ranger. In order to 
increase the energy they make the CS larger in the appropriate direction. As is known, the 
phenomenon of velocity aberration [1] in the process of the space vehicle motion leads to the 
deviation of the reflected ray in the plane, formed by the SC velocity vector and the sight line. This 
means that the reflected radiation pattern, or the dependence of the CS on the angular coordinates, 
should be adapted to the SC with definite parameters and orbit height. The GLONASS satellites 
have only uniaxial orientation; therefore, the SC rotates in the plane, orthogonal to the direction 
towards the Earth. The angular velocity aberration for these satellites is nearly equal to ~5". 

One of the promising methods for solving the problem of enlarging the CS is the use of a ring 
RA, consisting of double-spot CCRs with greater size. The double-spot diffraction pattern is formed 
due to the controlled variation in one of the dihedral angles (Fig. 4). The faces of such CCRs should 
be covered with a special dielectric coating, on the one hand in order to provide the appropriate 
radiation pattern, and on the other hand, to reduce its thermal distortions [7].  

The optimal radiation pattern is provided by the choice of the CCR size (42 – 48 mm) and the 
deviation 2.2" – 2.5" of the angle between the reflecting CCR faces from 90°. If the line connecting 
the spots also lies in this plane, then for the angular distance between the spots equal to twice the 
angle velocity aberration one of the spots will hit the receiver of the reflected signal. This allows the 
energy loss reduction that arises if the diffraction pattern has the form of one or seven spots [6]. 
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Figure 4. Radiation patterns of (a) the double-spot CCR and (b) of the entire RRA. 
 

However, the reasonability of using the RRA is not reduced to the CS enlargement. Let us 
show that in this case it is possible to reduce the RMS of a single measurement. Let the orientation 
of the RRA be defined by the projection of the edge of the dihedral angle that differs from 90° onto 
the plane in which the bases of all CCRs lie. To provide reflection of light in the required direction 
by at least one CCR, one should rotate all CCRs in the array by a certain angle with respect to each 
other; e.g., for 18 CCRs this angle equals 10°. The angular size of each spot with respect to the 
centre of the diffraction pattern depends on the CCR size: the larger the CCR the smaller this size 
(for example, for the CCR aperture diameter of 48 mm this is about 30° at half-maximum intensity 
level). In this way the adjacent spots add to form the ring-shaped diffraction pattern.  

The principle of operation for the RRA with turned double-spot CCRs is the following. 
Consider the hypothetic situation when the tangent component of the SC velocity is zero and the 
angular aberration is absent. In this case the centre of the ring diffraction pattern at the surface of 
the Earth coincides with the receiver, and there is no the signal. If the satellite moves with the 
velocity for which the angular aberration equals the angular size of the diffraction pattern, a certain 
part of the ring overlaps the receiver. This part is formed by one of the two spots from the CCR, 
definitely oriented in the RA. There can be several such CCRs.  

Thus, the signal, reflected in the direction of the laser ranger located on the surface of the 
Earth is produced not by all CCRs, as, e.g., for the planar array of uncoated CCRs [6, 10], but by 
only a few of them, in the ideal case, by two identically oriented CCRs located at the opposite sides 
of the RRA (see Fig. 1). Using not one but two CCRs with the same orientation, separated by a 
certain distance, allows the solution of the important problem of reducing the RMS of the single 
distance measurements. If 36 CCRs are used in the RRA, each of them being rotated by 10° with 
respect to the next one from each side of the RRA, then the signals of three adjacent CCRs are 
added. Generally, the choice of the optimal CCR size and their total number allows obtaining the 
maximal possible value of the CS for such RRA independent of the azimuth and tilt angle of the SC 
observed. 

Let us consider the single-measurement errors for two RRSs, consisting of uncoated CRs 
(Fig.3) and of double-spot CCRs (Fig. 5). In the first case the RMS σ of the single measurement is 
proportional to the array size. If the signal has the duration 50 ps (at the 1/e level of the maximal 
value) then depending on the incidence angle θ the following broadening in the temporal scale 
arises: for θ = 5°, 10° and 15° the RMS is σ = 54, 103, and 153 ps, respectively (see Fig. 5). With 
the fact that the delay of the pulse by 10 ps leads to the change in the distance by ~3 mm taken into 
account, for the RMS of the distance single measurement we obtain 16, 31 and 46 mm, respectively. 
At the signal duration 100 ps the broadening values are 62, 108 and 156 ps. 

In the case of the RRA consisting of double-spot CCRs (Fig. 5), in contrast with the planar 
array and the RRA with uncoated CCRs, the reflected pulse does not broaden, but splits into two 
pulses that in the ideal case conserve the initial Gaussian shape. Every RMS in determining the 
centre of gravity of these two signals equals the square root of the sum of their RMS squares 
(provided that the signal photons from the CCRs from both sides of the RRA are present). 
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Figure 5. Broadening of the Gaussian pulse at different values of τ2 ; θ = 5° (solid curve), 10° 
(dashed line) and 15° (dot-dashed line). 

 
For the duration of the initial pulse 50 ps this is 25218 =⋅ ps, and for the duration 100 ps this is 

49235 =⋅  ps, independent of the angle of incidence. For the angle of incidence θ = 15° and the 
pulse duration 50 ps the RMS for double-spot CCRs with the aperture 48 mm is six times smaller 
than the RMS for the uncoated CCRs with the aperture 28 mm.  
 
6. Conclusions  

The systematic error in measuring the distance to symmetric retroreflector systems by means 
of a laser ranger is determined by the delay of the laser pulse in a single cube-corner reflector. At 
the same time the RMS of single distance measurement is determined by the RA dimensions and 
CCR arrangement, as well as, generally, the CCR parameters, namely, the dimensions, the angles 
between the CCR faces, the type of the face coating. The single-measurement RMS is reduced if the 
ring retroreflector system is formed by double-spot enlarged CCRs. In this case the diffraction 
pattern is formed at the expense of the specified angle between the two reflecting faces and the 
special interference coating of the faces, providing a definite phase shift of the orthogonal 
components of the electric vector in the process of reflection. Theoretically the RMS can be reduced 
by several times using the CCRs with the aperture of 42 – 48 mm and the deviation of the dihedral 
angle by 2.4". The advantage of such RRA is realized using short probe pulses (to 100 ps) and large 
angles of incidence onto the RRA (greater than 5°). Wherein CS can be increased by 1,5 times.  
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