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1. Introduction

There are a number of different studies of retroreflector arrays
currently being done to assist in the design of future retroreflector
arrays and obtain a better understanding of the properties of current
retroreflector arrays. This paper gives a summary of these studies.



2. LARES preliminary transfer function

This section gives excerpts from a presentation at LNF in Frascati,
Italy in April, 2006.

A preliminary transfer function has been computed for the current
configuration of the proposed LARES satellite. The transfer function
is computed from the positions and orientations of the cube corners
kindly provided by Tommaso Napolitano of LFN/INFN. The
proposed design uses the same type of cube corner as LAGEOS but
mounted in a different sphere intended to provide better modeling of
thermal thrust which is important in the scientific use of the satellite.

The figures below show how the range correction varies as the
satellites rotates. This is a measure of the range accuracy. The last
figure shows the corresponding variation for LAGEOS.

LARES rotating about the symmetry axis
Viewed from the equator

Linear vertical polarization,  Wavelength 5320 Angstroms
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Comparison of LARES and LAGEOS

The variations in range are reduced by the square root of the number
of cube corners. Since there are about 4 times as many cubes on
LAGEOS the averaging is better by about a factor of 2.

Because the radius of LARES is about half the size of LAGEOS the
range correction is smaller. The variations would be smaller by about
a factor of 2 if there were the same number of cubes. Since LARES
has fewer cubes the two effects cancel each other approximately so
that the variation in the range correction is about the same for both
satellites.



3. Wavelength correction for LAGEOS 850nm-425nm

This is a preliminary report. No detailed report exists for these
analyses. This analysis was done at the request of Stefan Riepl who
plans to do two color ranging using circular polarization at
wavelengths 850 and 425 nm.

Wavelength correction for LAGEOS
850nm-425nm

4.0

3.5

3.0

2.5

2.0

1.5W
av

el
en

gt
h 

Co
rr

ec
tio

n 
(m

m
)

403836343230
Velocity aberration (microradians)

Figure 1. Wavelength correction vs velocity aberration for four
dihedral angle offsets.

Curve Dihedral (arcseconds)

Red 1.00
Orange 1.25
Green 1.50
Blue 1.75
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Figure 2. Wavelength correction vs velocity aberration averaged over
four dihedral angle offsets.

Microradians       1.00              1.25            1.50             1.75

 30.000000  2.064000  1.944000  2.537000  3.915000
 32.000000  2.494000  2.249000  2.648000  3.703000
 34.000000  3.035000  2.560000  2.664000  3.308000
 36.000000  3.568000  2.735000  2.467000  2.691000
 38.000000  3.978000  2.725000  2.098000  1.984000
 40.000000  4.242000  2.592000  1.683000  1.346000

Table 1. Data used to plot Figure 1 in millimeters. The dihedral angle
is listed in arcseconds above each column.

    30            32               34             36            38             40
2.615000  2.773500  2.891750  2.865250  2.696250  2.465750

Table 2. Data used to plot the average wavelength correction (mm) in
Figure 2. The velocity aberration in microradians is listed above each
entry.



The range bias is the result of three physical effects.

A. Diffraction
The diffraction pattern is different at each wavelength. As a result the
contribution of each retroreflector is different at each wavelength.
This results in a variation of a few millimeters in the range bias at
different parts of the diffraction pattern. If the dihedral angle offset is
optimized for the velocity aberration the average effect of diffraction
is minimized. In the tables, the range bias is smallest at around 1.5
arcsec and increases for larger or smaller dihedral angle offsets.

B. Refraction
In a solid cube corner the light is bent into the cube corner by
refraction at the front face of the cube. The refraction depends on the
phase velocity Vp. The phase index of refraction is Np= c/Vp. A
larger Np increases the acceptance angle of the cube corner and
gives larger signal for cubes at large incidence angles. For a circular
array the effect is that the centroid closer to the center of the array for
larger Np. This makes the range correction smaller.

C. Group velocity
The optical path length depends on the group velocity Vg of the light
in the quartz. The group index of refraction is Ng = c/Vg.

 wavelength   phase index   group index
   0.355        1.476         1.533
   0.4235       1.468         1.508
   0.532        1.461         1.484
   0.85         1.452         1.465
   1.064        1.450         1.462

Table 3. Np and Ng vs wavelengths (microns) provided by Stefan
Riepl.



Dihedral Diffraction Refraction Group Vel. Total

0.75       2.46       0.98        1.23      4.67
1.50       0.29       0.94        1.23      2.46

Table 4. The contribution to the range bias (mm) from each of the
three physical effects.

The values in Table 4 are the average for velocity aberration 32, 34,
36, and 38 microradians. The contributions from Refraction and
Group Velocity do not change much as the dihedral angle offset
changes. The changes are due almost entirely to diffraction effects.

Simulations for LAGEOS with various dihedral angle offsets give
the following range bias (850nm-425nm). The wavelength correction
is most stable if the dihedral angle is optimized for the particular
velocity aberration.

Dihedral    Range
  Angle     Bias
(arcsec)    (mm)

  0.00     13.18
  0.25     10.91
  0.50      7.23
  0.75      4.67
  1.00      3.24
  1.25      2.56
  1.50      2.46
  1.75      2.92
  2.00      4.52
  2.25      6.66
  2.50     10.18

Table 5. Wavelength correction (mm) vs dihedral angle offset
(arcseconds)



The data in this report are based on simulations at a large number of
orientations of the satellite. Data points were at 2 deg intervals in
longitude at the equator with fewer points near the poles. The points
were on and between each row of cube corners in latitude. At each
orientation simulations were done for both wavelengths and 4
different dihedral angle offsets. About 19000 simulations were
averaged to obtain the final results.

Summary. The average wavelength correction between 32 and
38 microradians is 2.806 mm +/- .2 mm.



4. Cross section of the APOLLO Lunar retroreflector array.

The full report on this analysis is listed on the webpage

http://ilrs.gsfc.nasa.gov/satellite_missions/index.html

The APOLLO Lunar retroreflector arrays use a 1.5 inch diameter
uncoated fused silica retroreflector with no intentional dihedral angle
offset. The front face is recessed by half the diameter in a cavity with
a 1.5 degree flare on the first APOLLO array and a 6 degree flare on
the two later arrays. This reduces the cross section for incidence
angles beyond 6 degrees. The cutoff angle with no flare would be
27.7 degrees. With the 1.5 degree flare it is 28.3 degrees. With the 6
degrees flare it is 30.3 degrees. The maximum velocity aberration for
ranging to the moon from earth is about 10 microradians. This puts
the receiver on the central peak of the diffraction pattern. The
maximum incidence angle due to the moon's libration pattern is
about 10 degrees.

1.0

0.8

0.6

0.4

0.2

0.0

Ac
tiv

e 
Ar

ea
 &

 A
re

a 
sq

ar
ed

2520151050
Incidence angle (deg)

Figure 1. Active reflecting area and square of the active reflecting
area vs incidence angle φ.
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        20(0.75)                   25(0.60)                28(0.40)                   29(0.30)

          30(.16)
Figure 3. Shape of the active reflecting area vs incidence angle φ. The
incidence angle is listed below each figure. The number in
parenthesis is the pixel size which has been reduced for the larger
incidence angles in order to give better resolution as the active
reflecting area decreases.



Since the APOLLO retroreflectors are uncoated, there is loss of total
internal reflection at certain incidence angles. Figure 4 below shows
incidence angles where there is loss of total internal reflection.

Figure 4. Total internal reflection diagram for an APOLLO
retroreflector.



Cross section at θ = +30 deg

Vertical polarization

- 5

- 4

- 3

- 2

- 1

Lo
g 

of
 re

la
tiv

e 
cr

os
s 

se
ct

io
n

302520151050
Incidence angle Phi (deg)

Red (10,0)
Green (0,10)
Blue (0,0)
Magenta Maximum

The cross section is plotted at four different points in the far field
diffraction pattern. The coordinates (x,y) in microradians are listed for
each color curve. The red curve is on the horizontal axis at (10,0)
microradians. The Green is along the vertical axis at (0,10). The blue
is at the center at (0,0). The magenta is the maximum and coincides
with the blue curve. The polarization is perpendicular to the plane of
incidence (vertical). At this orientation there is no loss of total
internal reflection.



Diffraction patterns at each incidence angle
θ = +30 deg, Vertical polarization

            
    00(50)         05(50)        10 (50)        15(50)         20(50)          25(50)         28(50)

Components at φ=28 deg (scale 200)

            
    vertical      horizontal       Total            29(50)       29(400)        30(50)       30(2000)

The incidence angle is shown below each plot in deg with the scale
in microradians in parenthesis. The components of the pattern are
shown at one incidence angle (28 deg).



Cross section at θ = -30 deg
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The cross section is plotted at four different points in the far field
diffraction pattern. The red curve is a point along the horizontal axis
at (10,0) microradians. The Green is along the vertical axis at (0,10)
microradians. The blue is at the center (0,0) microradians. The
magenta curve is the maximum intensity. The polarization is
perpendicular to the plane of incidence (vertical). At this orientation
there is loss of total internal reflection at about φ = 17 degrees. There
is a discontinuity in the slope of the curve at this point.



Diffraction patterns at each incidence angle
θ = -30 deg, Vertical polarization

            
    00(50)         05(50)         10(50)         15(50)         17(50)         20(50)        25(50)

      
    28(50)        28(100)        29(50)        29(200)

The incidence angle in degrees is shown below each pattern with the
scale in microradians in parenthesis.



Diffraction patterns at each incidence angle
θ = 0 deg, Vertical polarization

      
    00(50)        05(50)        10(50)        15(50)        20(50)         23(50)

       
    25(50)         25(100)       28(50)       28(200)       29(50)       29(400)

The incidence angle in degrees is shown below each pattern with the
scale in microradians in parenthesis.



5. Parametric thermal analysis of hollow cubes.

This section gives excerpts from a detailed (but unpublished) report
that is available on request.

Equations have been derived for making order of magnitude
estimates of the thermal gradients in a hollow Beryllium
retroreflector due to absorption of solar radiation. The equations
show the dependence on factors such as the area, thickness, solar
absorptivity, conductivity, and emissivity of the reflecting plates. The
performance of the retroreflector can be degraded by thermal
warping of the plates or changes in the dihedral angles between the
reflecting plates as a result of differential expansion and contraction.



Conduction through the plate.

If we have a plate in free space that is subjected to solar radiation on
one side, the side facing the sun will be warmer than the side facing
empty space. The thermal expansion of the side facing the sun will
be greater than the thermal expansion on the back side. This will
result in the side facing the sun being slightly convex and the side
facing empty space being slightly concave. The objective of this
analysis is to calculate the amount of buckling of the plate in order to
see if it will cause a significant distortion of the wavefront reflected
from the surface.

Suppose we have a square plate of area l x l and thickness w. The
thermal parameters are

α = solar absorptivity
ε1  = emissivity of the front surface
ε2  = emissivity of the back surface
S = solar constant = 1412.5 Watts/sq meter
k = thermal conductivity of Beryllium = 225 Watts/m-°K
c = linear expansion coefficient of Beryllium = 11.3x10−6K −1

σ = Stefan Boltzman constant = 5.6697x10−8Wm−2K −4

The deflection of one side of the plate due to conduction through the
plate in terms of the parameters above is given by

€ 

d =
lclfαSw
2wk

=
cl2 fαS
2k



Conduction along a plate.

The linear expansion of the plate due to conduction along the plate is
given by the equation

d = cfαSl3

kw

Putting numbers into the equations shows that conduction through
the plate is not a problem because the conduction path is wide and
the path length short. However, conduction along the plate can be a
problem because the path length is long and the conduction path is
narrow.  Thermal distortion of the plates is acceptable as long as the
cube corner is not larger than about 2 inches and the plate has a low
solar absorptivitiy such as 7 percent.



6. Retroreflector arrays for high altitude satellites.

The data in the tables below shows options for obtaining a cross
section of 100 million sq meters at the altitude of the GNSS satellites
and a cross section of one billion sq meters at geosynchronous
altitude. A detailed report was presented at the EGU conference in
Vienna in April, 2006.

Retroreflector area and mass
Galileo

Design # of
cubes

Diam.
in

Area sq
cm

Mass
g

uncoated 50 1.3 428 1000
coated 400 0.5 508 460
hollow 400 0.5 508 201
hollow 36 1.4 356 400
GPS 160 1.06 1008 1760

Geosynchronous

Design # of
cubes

Diam.
In.

Area sq
cm

Mass
g

Uncoated 165 1.7 2415 7457
Coated 1153 .7 2863 3638
Hollow 1153 .7 2863 1590
Hollow 122 1.8 2003 2863
Single
dihedral

22 2.0 446 708



Array area and mass
GPS

Design # of
cubes

Diam.
in

Area sq
cm

Mass
g

uncoated 50 1.3 847 2310
coated 400 0.5 1005 1062
hollow 36 1.4 587 1144

Geosynchronous

Design # of
cubes

Diam.
In.

Area sq
cm

Mass
g

Uncoated 165 1.7 4782 17,218
Coated 1153 .7 5668 8400
hollow 122 1.8 3305 8217
The estimates of array mass were made by scaling from similar
arrays on existing satellites.



7. Measurements of Russian cube corners

A detailed report is available on these measurements. Excerpts from
the report are given below. The data used in this analysis were kindly
provided by Vladimir Vasiliev. A measurement of a reference mirror
the same size as the cube corner is used for absolute calibration of
the cross section of the cube corner.



Normalized patterns

Figure 7 shows the normalized patterns for the reference mirror and
cube corner. The cube corner is a very high quality diffraction limited
cube.

                

                             A. Mirror                                          B. Retroreflector

Figure 7. Diffraction patterns of reference mirror and cube corner
normalized to 100%.
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Figure 13. Plot of cross section vs velocity aberration for the mirror
and cube corner. The patterns have essentially the same shape. The
values are the average around a circle in the pattern.



            

                      A. Mirror                                          B. Retroreflector

Figure 14. Diffraction patterns of reference mirror and cube corner
measured at the same scale.
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Figure 15. Normalized and fixed scale measurements of the cube
corner for case A.
Red = normalized
Green = fixed scale



           

                       A. Mirror                                          B. Retroreflector

Figure 18. Diffraction patterns of reference mirror and a typical
Glonass cube corner measured at the same scale.
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Figure 19. Cross section of the reference mirror and a typical cube
corner vs velocity aberration.
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Figure 20. Cross section of good cube corner at fixed scale and
typical Glonass cube corner vs velocity aberration.
Red = good cube measured at fixed scale
Green = typical Glonass cube corner measured at fixed scale
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Figure 21. Cross section of good cube corner and typical Glonass
cube corner vs velocity aberration showing the cross section at larger
values of velocity aberration. The cross section of the typical cube is
larger than that of a diffraction limited cube corner past about 20
microradians.



8. Thermal simulations of Russian cube corner.
These simulations were done using a very simple thermal simulation
program. It is not a high fidelity model and has been used only to
give order of magnitude effects.

The detailed thermal parameters of the Russian cube corners and
mounting structure are not available so a realistic simulation cannot
be done. These are parametric studies using assumed values of the
thermal parameters.
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Red = vertex
Green = center of front face.

Temperature of the vertex and front face vs time. The cube is
initialized to 315 deg K with a solar simulator on at normal
incidence to the front face. The mounting cavity is at 300 deg K. The
effective emissivity of the cavity is 50%. The emissivity of the front
face is .85. The reflectivity of the aluminum back faces is .85 per
surface (.614 for three reflections). Absorption of solar radiation by
the quartz and conductivity of the mount are not modeled. The solar
simulator is turned off at 5000 sec.
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Temperature difference between the vertex and the center of the front
face vs time.
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Temperature difference between the vertex and the center of the front
face from 0 to 200 seconds.
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Temperature difference between the vertex and the center of the front
face from 4950 to 5200 seconds.



Diffraction pattern before the solar simulator is turned off at 5000
seconds. Scale is -50 to +50 microradians in each dimension.
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Red = average
Pink = minimum and maximum values around a circle in the far
field.

Cross section vs velocity aberration at 5000 seconds before the solar
simulator is turned off. The cross section is in units of 10.5 million sq
meters. The cross section at 26 microradians is .06 which is
.63million sq meters per cube. For 32 cubes this is 20 million sq
meters which is the nominal cross section for GPS.



Diffraction pattern at the end of the simulation at 20,000 seconds.
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Red = average
Pink = minimum and maximum values around a circle in the far
field.

Cross section vs velocity aberration at 20,000 seconds. The cross
section at 26 microradians is ..027 in these units which is .28 million
sq meters per cube. For 32 cubes this is 9 million sq meters. This is
about half the nominal cross section of 20 million sq meters for GPS.
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Red = with sun
Green = no sun

Comparison of cross section vs velocity aberration with solar
illumination (red) and without solar illumination (green). The
patterns are completely different. The central peak drops from .7 to
.04 with solar illumination. The cross section at 26 microradians is
about twice as great with solar illumination. The units are such that
the amplitude of the central peak is unity for a perfect reflector. With
Fresnel reflection losses at the front face the maximum amplitude is
.93 in these units.

These results suggest that thermal effects could, in principle, cause
significant variations in the diffraction pattern. However, the actual
behavior could be quite different from the simulations since the
thermal parameters of the cube corner and mounting structure are not
available. In the absence of a reliable simulation the only way to
know how the Russian cube corners behave is by laboratory testing.



9. Laboratory tests of cube corners.

The space climactic facility at LNF in Frascati, Italy presently has a
section of the LAGEOS retroreflector array, a section of LARES
cube corners, and the third GPS array which contains Russian cube
corners. The plan is to take diffraction patterns similar to those
described in section 7 of this report and do thermal vacuum test to
measure the response of the cube corners to solar radiation. These
test results can be compared to the simulations given in section 8 of
this report. There will probably be significant differences between the
simulations and the laboratory tests because of the limitations in the
modeling.



10. Modeling of the response of a SPAD detector to a
distributed signal.

This section is a question, not a statement.

The analysis programs that I use can compute the range correction of
a retroreflector array for centroid and constant fraction detectors.
They cannot compute a range correction for a SPAD detector
because I have no clear understanding of how the current rises after a
photon is detected. The usual assumption is that the range correction
is the distance to the first retroreflector since the SPAD triggers on
the first photoelectron.

One possible model of a SPAD is that the number of charge carriers
increases exponentially after a photon is detected until saturation
effects set in as a result of the finite number of available charge
carriers. Until saturation sets in the number of carriers n vs time t is
given by

€ 

n = et

Tom Murphy has suggested that the dependence of the number of
charger carriers is closer to

€ 

n = t2

The reasoning is that the charger carriers are contained in a thin
layer. The area of conduction is a disc whose radius increases
linearly with time by thermal diffusion of the charger carriers. The
area of the disc is proportional to the square of the radius.

The rise time of a real SPAD detector is a function of the number of
photoelectrons. This effect is used to calibrate the response vs signal
strength by ranging to a flat target. In the exponential model the rise
time is independent of the number of photoelectrons. The quadratic
model does give a dependence of the rise time on signal strength.
However, there are geometrical effects that alter the simple equation
in a real SPAD. I have no model for these geometrical effects. Below
is an analysis based on an exponential buildup.
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Figure 1. Current vs time for different numbers of starting
photoelectrons. The total number of electrons is N =1023.

red = 1 electron
green = 10 electrons
blue = 100 electrons
magenta = 1000 electrons

In the target tests the change in the time of the 50% Point from 1 to
1000 photoelectrons is about 240 ps. This corresponds to 6.9 time
units in the simulation because log(1000) = 6.9077. Using the target
tests as a calibration factor to the time units gives 240/6.9 = 34.8 ps
per time unit. In one way range 34.8 ps corresponds to 5.2
millimeters.



SPAD with distributed input
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Figure 2. Number of charge carriers vs time.

The values along the lines in linear units are

                                     Time
Case Color   Line         0      1       2       3

   1    Green  Curve      02     03     05     09
   2    Red     Bottom 01 02 04 08
   3    Red     Middle 02 04 08 16
   4    Red     Top 04 08 16 32

The values along the vertical axis in linear and logarithmic units are

n                   2         4        8         16         32
log(n)        .6931  1.386  2.079  2.7725  3.2657

The time units in Figure 2 are such that the number of charge carriers
increases by a factor of 2 in one time unit. The three straight red lines
(cases 2, 3, and 4)  are the number of charge carriers vs time with 1,
2, and 4 initial photoelectrons respectively. The dotted lines are
extrapolations backward in time. The vertical axis is the natural
logarithm of the number of charge carriers.
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The green curve (case 1) is one photoelectron more than the bottom
red line (case 2). The percentage change in the number of charge
carriers in the green curve is less as time increases. The dotted green
line is the backward extrapolation of the green curve at t = 3 where
the number of charge carriers is 9.

In the green curve (case 1) the number of photoelectrons is 2, the
same as the middle red curve (case 3). However, the extrapolation
back in time gives a different result for cases 1 and 3. Would the rise
time of a real SPAD for the case of the green line (case 1) be the
same as that of the middle red line (case 3) , or would it be closer to
the rise time of the bottom red line (case 1)? What time correction
would be applied by the CSPAD to the case of the green line?



Figure 3 plots the effect on the measured time of receiving a second
photoelectron vs the time when it is received.
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Figure 3. Variation in the time of the 50% point vs the time due to a
second photoelectron. There is one photoelecton at time = 0.

Time of 2nd pe    Time of 50%            Δ50% Point
  t    mm    Point      t     mm

 0.0  0.0   52.1995  0.6931  3.60
 0.5  2.6   52.3796  0.5130  2.66
 1.0  5.2   52.5514  0.3412  1.77
 2.0 10.4   52.7532  0.1394  0.72
 3.0 15.6   52.8390  0.0536  0.28
 4.0 20.8   52.8726  0.0200  0.10
 5.0 26.0   52.8852  0.0074  0.04
10.0 52.0   52.8926  0.0000  0.00

Table 1. Time of 50% Point vs time of the second photoelectron.



Conclusions

This analysis may be wrong as a result of using the wrong
expression for the number of charge carriers vs time. However, a
different expression would probably still come to the same
conclusion regarding the change in the time of the 50% point as a
result of a second photoelectron received shortly after the first.

In the absence of a good model describing the behavior of a SPAD
the only way to know the effect of a photoelectron that arrives a short
time after the first is to do an experiment. For example, the target
calibration vs signal strength could be done first with a flat target and
then with a target where half the area is at position zero and half is a
few millimeters farther away.


