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Abstract

This paper describes fundamental changes to a contemporary version of the NASA Satellite Laser Ranging Generic
Normal Point Processor. The basis of this upgraded process is the former normal point generator with numerical
improvements added to suppress sporadic deficiencies and bolster overall product quality.  The new algorithm incorporates
modern numerical treatments of the solution of least-squares normal equations, tangible criteria for gauging the optimality
of trend functions, and the application of robust estimation theory toward initial outlier rejection.  A simple median filter,
in combination with other robust estimators, aids to identify the primary trends embedded in noisier data sets.  The
enhanced processor was validated by comparing normal point residuals against precise long-arc ephemerides under worse
case scenarios.  A public domain version of the software is anticipated.

A.  Overview

1.  Problem Summary

Recently, recurring anomalous SLR normal points were noted by analysts (R. Noomen, Personal Communication)
in the SLR normal point product from stations using the on-site NASA Generic Normal Point Algorithm (known here as
GNP-1).  Such anomalies usually appear at the extremities of a pass when compared against post facto long-arc trajectory
solutions (see Figure 1).  Mild signal remaining in the residual track is another, but less well known, problem.  This
residual signal is often observed on long passes with high tracking densities, typical of LAGEOS tracking.  Additionally,
the NASA SLR Mission and Data Operations Group of AlliedSignal Technical Services Corporation (ATSC) manually
reprocesses all NASA SLR full-rate observations of the GPS-35 and GPS-36 satellites.  This effort is necessary due to the
historically poor quality of  the SLR normal points ranging to GPS altitudes.  Many software enhancements were added to
GNP-1 to diagnose abnormal normal points, culminating into a second-generation program referenced herein as GNP-2
(Figure 4).  The scope of this upgrade has not yet encompassed alternative bias functions or trend function
recommendations (see Appleby and Sinclair, 1992).

2.  Overview of the GNP-1 Processor

The NASA Generic Normal Point Processor GNP-1 has grown out of the original Herstmonceux recommendations
(Sinclair, 1997).  The process was initially expanded to include a short arc state update to accommodate deteriorating
predictions.  The Poisson filtering technique developed at MLRS for LLR applications was later incorporated to facilitate
daytime tracking (Ricklefs and Shelus, 1992, Jefferys and Ries, 1996).  The GNP-1 algorithm also shares some of the SLR
editing techniques employed by the University of Texas Center for Space Research (Davis et al., 1997, p. 455).  However,
the GNP-1 process typically estimates several more degrees of freedom since the dynamic orbit model is based on the so-
called “tuned IRV”.  This dynamic model has certain deficiencies for very low or very high altitude satellite trajectories
(Sinclair, 1994).  Conklin et al. (1994) provides a detailed description.

The Herstmonceux algorithm is predicated on the availability of high precision predictions, best available a
priori time bias, and possibly corrections to the predicted UT1 values.  Applying these recommended corrections reduces
the magnitude of the residuals so one can choose a suitable range window to remove the largest outliers.  The GNP processes
are exceptional because no mechanisms exist to supply these corrections.  Residuals against a biased IRV prediction have
been observed to approach one kilometer, encumbering initial outlier rejection.

GNP-1 prefers to estimate its own bias functions on a pass-by-pass basis (see Appleby and Sinclair, 1992), but
the presence of substantial outliers can occasionally corrupt these in situ bias estimates. When noise levels are
exceptional, editing is deferred to the Poisson filter.  Poisson filter performance is optimal in the presence of a flat residual
track, and gains may be possible with the tailoring of satellite-specific parameters originally adjusted via user interaction



(Ricklefs and Shelus, 1992).  However, the GNP-1 implementation of the Poisson filter lacks this kind of fine tuning and
sporadically retains measurement noise during unfavorable circumstances.

3.  The Origin of Bad Normal Points in GNP-1

Investigation has confirmed that bad normal points are the manifestation of anomalous full-rate tracking data not
initially culled from the full-rate measurements.  Outlier rejection is aggravated by the fact that, for noisier passes, recursive
editing with an RMS multiplier is less effective when noise inflates the RMS values.  An unconstrained trend function
(defined as a function of time) is also prone to consider any datum isolated in time, known as a "leverage point"
(Wadsworth, 1989, p. 16.14).  Once a time-isolated outlier, or bad leverage point, has corrupted the trend function, i t
cannot be removed with RMS multiplier editing.  The inclusion of bad data in a weakly tracked pass has been known to
corrupt the nominal estimation of the trend function across adjacent normal point windows.  This is especially true at the
extremities of sparsely tracked passes, where the tracking density is insufficient to constrain the boundaries of the trend
function in the presence of bad leverage point,s.  Enhancements have therefore focused on the use of robustness methods to
reject these outliers autonomously.

B.  Robustness Methods

4.  The Concept of Robustness

Outlier rejection is often accomplished via robust estimation.  A qualitative definition of robustness “signifies
insensitivity to small deviations from the assumptions” (Huber, 1981, p. 1).  “Small deviations” can imply either a small
number of sizable deviations (outliers), or a sizable number of small deviations (abnormal distribution) (Press et al., 1992,
p. 694).  For example, statistical interpretation of a least-squares estimator presumes the errors are normally (Gaussian)
distributed and without bias, yet SLR data are frequented with outliers where such distributional assumptions are violated.
Numerous papers also acknowledge systematic biases and non-Gaussian densities due to satellite signature and detector
characteristics (Sinclair (ed.), 1995), but the immediate emphasis is on the estimation of trends from noisy time series.

The use of robust estimators on SLR data is not novel:  robustness is the primary concept driving the
Herstmonceux algorithm.  Regarding other work specific to SLR, Paunonen (1992) uses an “adaptive median filter”
minimizing the median absolute error, and Detong et al. (1992) cites success with Hampel M-estimates.

5.  M-Estimators

The reader is directed to the following references as a starting point for more comprehensive discussions of robust
M-estimators:  Press et al. (1992), Hogg (1977), Huber (1996), Rey (1983), Wadsworth (1989).  The following treatment
is provided merely to convey notation, and to illustrate how the original Herstmonceux recommendations form a quasi-
robust M-estimator.  According to Huber, the generalized form of an M-estimate or maximum-likelihood-type estimate that
minimizes the scalar performance index J( )*X0  is:
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where ρ(yi) is an even function of the observation residuals yi.  For the general least-squares (LS) problem, ρ (y) ≡  y 2/2 and

ψ (y ) = y .  The observation residual yi is the difference between the observed and the computed observation, sometimes

abbreviated [O-C] and defined as:

y Y G ti i i= − ( , )*X0 ,  i = 1→n (scalar);    -or-    y Y G X= − ( , )*
0 ti  (vector)

where Yi is an n vector of observations at times ti, G ti( , )*X0  is an n vector containing the calculated value of the

observations at times ti based on state variables X0
*  using a geometrical or physical observation/state relationship.  The

performance index is minimized by taking the partial derivative of an analytical expression for J( )*X0  with respect to the

estimated parameters.  Press et al. (1992, p. 696) presents a compelling analogy demonstrating that ψ(yi) is functionally

equivalent to an observation weight wi in the weighted LS algorithm.  This implies that the underlying Gaussian error

distribution can be augmented to represent a more realistic distribution via the ψ(y) function.  For a continuous probability

density function f(y), the ordinary maximum likelihood estimator for that distribution will take the form ρ (y) = -ln|f(y) |

(Huber, 1996, p. 13), or alternately f(y) = e-ρ(y).  The ψ-function is the derivative of this ρ(y).



Derivation of the so-called normal equations that minimize the LS performance index is adequately detailed in
numerous texts (i.e., Vallado, 1997);  again, this limited presentation merely defines notation.  Given a vector of n
observations Y and a vector of m parameters X0

*  to estimate, the normal equations that represent the minimum variance

estimate (or maximum likelihood estimate) of the weighted LS problem are satisfied by the matrix-vector expression:

x̂ H WH H Wy= [ ] [ ]−T T1
 ;  X x X( ) ( ) ( )ˆk k k+ = +1

where H is the (m×n) design matrix of partials, W is an (n×n) weight matrix, y is an (n×1) residual vector such that:
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Huber was one of the first to describe an algorithm for robust single parameter M-estimates, cited as the “Modified

Weights” approach.  In later literature (Coleman et al., 1980, Holland and Welsch, 1977, Jefferys, 1990), this technique i s
better known as iteratively reweighted least squares (IRLS).  IRLS is directly applicable to the ordinary weighted LS normal
equations, where the elements of the diagonal weight matrix W (previously defined as a priori measurement variance) are

iteratively scaled (k = 1→∞) according to:
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Unlike the Herstmonceux recommendation, the median absolute deviation (MAD) substitutes for RMS as the preliminary
scale estimate.  The diagonal weights wi on the kth iteration are used to update the state via the normal equations.  Adequate
statistical accuracy is usually attained within k < 10 iterations (Huber, 1996, p. 39), and experience holds this true for all
but the noisiest SLR passes.

The Herstmonceux algorithm is a form of quasi-robust IRLS M-estimator, because neglecting observations whose
residuals exceed some multiple of the scale estimate (RMS) is equivalent to iteratively reweighting the LS solution with wi =
1 or 0.  In fact, data screening in this way supposes that the underlying distribution is Gaussian with heavy tails added to
accomodate outliers (Holland and Welsch, 1977).  Dependence on RMS as the scale estimate is a potential stumbling block:
the RMS can be largely effected by marginal data on the shoulders of the distribution, and iterating the scale estimate tends
to affect convergence in unpredictable ways.  GNP-2 therefore applies a robust scale estimate based on MAD that does not
require iteration, and scaled so it conforms to the conventional notion of standard deviation (Rey, 1983, p. 127):

σ ≈ 1.4826*MAD

6.  Choice of IRLS M-Estimate

Herstmonceux recommended weights of zero and unity can be augmented with a weight profile having more

desirable robustness characteristics.  One necessary characteristic for a robust estimator is that its ψ-function should

bounded for all values of ∆ (Huber, 1996, p. 14), and ideally, the derivative of the ψ-function should be monotonically

decreasing (Hampel, 1985).  To illustrate these concepts, a short example is contrived using an approximate distribution
function already introduced in the SLR literature (see Sinclair, 1995b, p. 39).  This “peak-finding” distribution f(∆)

approximates the shape of the Gaussian distribution with trimmed tails, whose ρ-function can be found according the

prescription:
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for the tuning constant c = 2.558.  Differentiating, the corresponding ψ-function and weighting profile for IRLS are:
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For values of ∆ > c, the “peak-finding” distribution set to zero, and it is presumed that the influence and weight are also
meant to be zero.  As an estimator, the “peak-finding” distribution has one of the properties of robustness because the

ψ-function is bounded for infinite ∆ (for finding the peak, the function is made more robust by setting c = 1, see Sinclair,

1995b).  Although this distribution approximates the standard normal distribution, its ψ-function is less robust than an LS

estimator using the same tuning constant, since the weight profile increases with ∆.

The previous example attempted to illustrate how the ψ-function can serve as a heuristic for gauging robustness.

Not surprisingly, estimators are classified by the behavior of ψ(∆).  If ψ (∆) = 0 for sufficiently large |∆| (such as the

Herstmonceux recommendation), the ψ-function is classified as a redescender.  If ψ (∆) →  0 asymptotically as |∆ |  →  ∞ ,

the ψ-function is sometimes said to be a soft-redescender, and other bounded profiles can be classified as monotone

(Holland and Welsch, 1977).  GNP-2 replicates some aspects of a mathematical software package described by Coleman et
al. (1980) to perform IRLS using various robust estimators.  This experiencehas resulted in the preferential use of the

weight profile associated with the ρ-function “Fair” (Fair, 1974).  This appealingly simple ρ-function is well regarded (Rey,

1983, p. 110;  Jefferys, 1990;  Jefferys et al., 1988), and has the desirable property of being differentially insensitive to
estimated scale (Holland and Welsch, 1977).  The Fair function has nice convergence properties because it is everywhere
defined continuous over the first three derivatives (Rey, 1983, p. 116).  The Fair function as used by GNP-2 is:

ρ( ) ln( )∆
∆ ∆

= − +
⎡

⎣
⎢

⎤

⎦
⎥c

c c
2 1  ;  ψ ( )∆ ∆

∆
= +

⎡

⎣
⎢

⎤

⎦
⎥

−

1
1

c
 ;  w

ci
i= +

⎡

⎣
⎢

⎤

⎦
⎥

−

1
1

∆

where the tuning constant c = 1.3998 for 95% asymptotic efficiency on the standard normal distribution.

Experiments with GNP-2 on SLR full-rate data suggest that a combination of a monotone weighting profile

followed by moderate ×RMS editing is an appropriate estimation technique for reducing trend functions, provided leverage

points are initially down-weighted.  Experience has shown that redescenders can initially nullify valid observations and
adversely impact convergence.  This limitation is affirmed by Hampel (1985, pg. 152) for iterative algorithms like IRLS.

C.  GNP Enhancements

8.  Weighting Scheme

In accordance with the Herstmonceux recommendations, GNP-1 maintains a corresponding weight for every
observation. The weights are either unity or zero depending upon whether the observations are deemed “valid” or “noise”,
respectively.  The drawback to this method is that an individual observation has either full influence or none:  there is no
way to slowly introduce suspicious or marginal data.  GNP-2 introduces the variably weighted LS approach with valid
weights ranging from zero to unity, according an alternate robust distribution (i.e., Fair).  Suspected outliers and noise are
suppressed for estimation purposes using the designator wi = -1.  Suspect data are ignored until they qualify under some

future criterion (i.e., within ×RMS of some trend).  If a negatively weighted value is ever to be reinstated, wi is set to zero so

it does not have undue initial influence.

9.  Leverage Point Pre-Filter

Experience has dictated that, when the relative data density drops to a very low rate (less than one measurement per
minute), it is highly plausible that the “time-isolated” measurements are no longer valid SLR observations.  This is not
unexpected since periods of lost target acquisition would result in the recording of noise only.  Such sparse data are always
highly prone to being accepted because they are leveraged.  To suppress the formation of time-isolated outliers into bad
single-point normal points, GNP-2 implements a leverage point pre-filter that initially flags heavily leveraged points as
noise.  Here, a datum is considered leveraged if it is the lone observation within a specified time period labeled the
“isolation window”.  The isolation window is arbitrarily chosen to be equal to either the recommended integration step size
for the IRV integrator, or twice the normal point bin size (whichever is larger).  These values are passed via a satellite data
file containing other satellite specific parameters.  The isolation windows for several satellites are listed in Table 1.

The leverage pre-filter is an important factor toward eliminating bad normal points, but its use comes with mild
risk.  It is unlikely, but still possible, to have high quality data consisting of nothing but highly leveraged points.  All



leverage points are reconsidered later in processing once data trends have been initially assessed by higher confidence data.
Their reintroduction may not be totally successful when the tracking is so sparse that the trends cannot be extrapolated
unerringly, or the noise level exceeds 50% in that part of the pass.

10.  Median Pre-Filter

GNP-2 introduces a median pre-filter to identifies local trends in dense but noisy data.  The median pre-filter first
estimates an average based on a local sequence of Npoint residuals, then compares this local average with the central value of
the sequence.  An initial weight is assessed based on the distance of the actual residual from the group estimate.  The median
pre-filter uses the median as its estimate of location (L-estimate) and arbitrarily chooses the initial weighting:

w mediani i i i= − −( )⎛
⎝
⎜

⎞
⎠
⎟max ,0 1

2

obs MAD

where mediani is the median value of a window of Npoint residuals, obsi is the residual at time ti, and MADi is the median
absolute deviation of the Npoint residuals.  If the local MADi is very large relative to expected SLR observation scatter or the
pass average, it indicates that no confidence can be placed in the local L-estimate.  If the residual track is relatively flat
across the entire pass (indicating no recognizable local trend), the working assumptions are violated and the filter i s
bypassed.  The median pre-filter works optimally in the presence of steep residual gradients, regions where Poisson
filtering is thought to be less effective (Ricklefs and Shelus, 1992).

A disadvantage to this filtering scheme is that it tends to unfairly fault Npoint/2 points on the extremities of large
data outages.  This is one incentive for keeping the window size small.  Another disadvantage is that the local trend can
vary over a large window in a way that cannot be observed by a simple L-estimate.  Studies by Andrews et al. (1972) also
indicate that L-estimates with noise are less reliable when using a window size of Npoint < 10 observations.  GNP-2 uses a
nominal window value of Npoint = 11, (but also utilizes windows of 5 and 7 after the data have been pre-filtered).  Experience
dictates that larger window sizes provide more aggressive editing and are not recommended.

The previously discussed combination of initial weight function, median L-estimate, and small window sizes will
nominally reject up to 50% of the residuals for densely tracked passes, with less aggressive data flagging when the tracking
density falls.  While this rejection rate appears excessive, the only purpose of the median pre-filter is to identify the local
trend based on surrounding data.  The best residuals selected by this filter are heavily weighted as a starting point for further
trend reduction.  Although crude, this filter can be quite effective on identifying the true signal embedded in very noisy
passes having strong biases (Figure 2).

11.  Short Arc Differential Correction

Observational residuals are partly minimized with a short-arc differential correction (DC) that updates the six
element satellite state vector using the IRV satellite dynamics.  Observations consist of reduced one-way ranges plus a
tropospheric delay correction.  Except for an elevation dependent empirical TOPEX correction, there is no attempt account
for any satellite- or station-specific attributes within the software itself.

The stability and accuracy of the DC are improved in GNP-2 by reformulating the normal equations solution

approach.  GNP-1 solves the normal equations by first forming HTWH, and inverting a 6×6 system using Gaussian

elimination with partial pivoting.  Although computationally convenient, this practice results in significant information
loss (see Golub and Van Loan, 1989, p. 225;  Watkins, 1991, p. 187).  Without a priori covariance, GNP-1 prevents such
a linear system from becoming numerically singular by forcing operations involving H into extended precision.  GNP-2
solves the normal equations using Singular Value Decomposition (SVD) working on W««««H (Press et al. 1992, p. 59).  SVD

adds computational expense, but it is justified since it best satisfies the definition of qualitative robustness described
earlier.  The GNP algorithm estimates parameters assumed to be observable (which may not be), and SVD is the best
prospect in providing solutions to nearly singular systems.  SVD is a recommended procedure for IRLS algorithms, since
the system of equations can approach rank deficiency while iterating (Coleman et al., 1980, p. 330).

The derivatives that comprise the individual elements of the design matrix H are finite difference numerical
approximations.  The differences are based on a numerical integration of the IRV dynamic model using perturbed initial
conditions (Escobal, 1976, p.326;  Vallado, 1997, p.687).  The six finite differences used by GNP-1 take the form:
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where ρ is the computed slant range, X0 is the initial satellite state at the start of the pass, x 0 is a small perturbation to the

initial state, and the term in brackets is the first high order term neglected in the approximation (the neglected term i s
easily inferred via Taylor series expansion).  The precision of this numerical approximation is often dependent on the
optimality of x 0, but assessing its adequacy proves difficult without corresponding analytical formulations.  Experience
with the GNP processes has shown that the perturbation x 0 must be minuscule to be consistently effective, on the order
10-10% of the modulus of the position or velocity vector.  This contradicts the cited literature, which typically recommends
values of a few percentages (admittedly, the same literature does not particularly advocate the use of finite differences due to
its imprecise nature).  The GNP algorithms find usable values for x0 by first initializing these perturbations as insignificant

but non-zero numbers.  These are incremented until ρ(X 0+x0) - ρ(X 0) exceeds a significant level of the floating point

accuracy (Press et al., 1992, p. 883).  Evaluated this way, finite differences can be overwhelmed by numerical error because
they represent the difference of two large numbers divided by a very small number.  Steps were introduced in GNP-2 to ensure
that x0 is always a number that has an exact binary representation (Press et al., 1992, p. 181), which preserves accuracy
otherwise lost by division.

A central differencing equation is introduced for derivative approximation in GNP-2 (Vallado, 1997, p. 687):
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where the term in brackets is again the first high order term neglected.  This difference equation is twice as expensive to
evaluate since it requires two evaluations based on both positive and negative deviations of the nominal initial conditions.
A very small initial perturbation x0 still seems to be required, but this form is more qualitatively robust (because a central
difference more closely approximates an analytical derivative).

The GNP-1 DC estimator employs the standard unweighted least squares with ×RMS editing, while GNP-2 uses a

more robust “Fair” estimator initially.  GNP-2 also attempts a  goodness-of-fit test (Press et al., 1992, p. 657) to evaluate

whether robust estimation is warranted;  if not, a faster ×RMS editing scheme is adopted.

12.  Selective Sampling

The computationally intensive GNP processes attempt to work with subsets of the total data to reduce CPU load.
Sampling in GNP-1 was a simple process that chose every Nth point based on the amount of reserved memory.  For example,     

GNP-1 limits the numerically rigorous DC process sample size to 120 observations:  for a pass containing 1000 SLR
measurements, every 8th observation is considered for the state update.  Unfortunately, this kind of sampling does not
explicitly account for the variable observation densities encountered during the pass.  GNP-2 introduces the notion of
selective sampling which chooses samples based on the pre-filter weights and tracking density.  When tracking becomes
sparse, data are preferred based on their time distribution, while data over densely observed regions are preferred based on
the quality of pre-filter weights.  GNP-2 is currently configured to use up to 500 pre-qualified, selectively sampled
observations in the state update.  Because sampling can be scaled via a single FORTRAN parameter, SVD is not necessarily
a computational bottleneck on slower machines.

13.  Bias Function

After the state update, a pass-specific bias function is estimated and removed.  The function has three terms:  a

range bias Ρ, a timing bias Τ, and a higher order unit-less term called the force-model bias Γ.  This function takes the form:

B t ti bias i bias i i bias( ) ˙ ˙= + +Ρ Τ Γρ ρ

GNP-1 estimates the coefficients of this function by solving the normal equations using Cramer's rule with 3×RMS editing.

GNP-2 has maintained the same functional relation, but estimates these coefficients using SVD and IRLS.  This change i s
necessary since GNP-1 may not recognize when the time-bias coefficient is approaching unobservability, which occurs
when the satellite is only tracked briefly near the point of closest approach.  The maximum allowable condition number i s

chosen to be κ(H) = 108, which is small relative to the capabilities of double precision arithmetic.  The estimated time bias



is applied to the IRV epoch early in the GNP-2 process, prior to attempting a differential correction.  The complete bias
function is estimated and applied after the differential correction update (Figure 4).

14.  Sliding Polynomial Edit

GNP-2 introduces a “sliding polynomial edit” that successively estimates 3r d order polynomials over a sliding      

window of residuals.  The polynomial residuals are used to re-weight the SLR observations after the satellite state update.
This editing is necessary because the state update and bias function estimates are based on samples, and the observation
weights for the rest of the SLR data trend are no longer consistent with the sample set weights returned from the DC.  By re-
initializing the weights in this way, the final trend function evaluation will usually converge faster.

15.  Final Trend Function Evaluation

The GNP-1 process uses a variable order polynomial as a function of time to model remaining trends in the residual
track.  Appleby and Sinclair (1992) suggest a bias function in terms of RTN space (radial, transverse, normal) as a natural
basis for removing orbit error.  However, GNP-2 still maintains a time-varying polynomial trend at this time.

In all cases, GNP-1 uses a generic Nth order time polynomial as the basis for the final trend, but there are subtle     

defects in the logic that selects the optimal polynomial (Figure 1).  In practice, the polynomial order is successively
increased until the RMS fit does not change much, and the final polynomial evaluated is assumed the best fit.  As designed,
the polynomial is slightly over-estimated because the RMS was substantially reduced using the previous iteration, not the
final one.  A more serious problem occurs because convergence is assumed when one additional degree of freedom does not
improve the RMS fit.  In many cases, two low-order polynomials might have equally poor fits (showing no improvement in
RMS), and the process stops prematurely.  This is a primary source of residual signature found in long, high density passes.

GNP-2 evaluates several degrees of polynomials using Chebyshev basis functions, then compares results to
choose the most effective polynomial.  Minimum RMS is not always a good indicator of the best trend function because any
arbitrarily high order function can accommodate existing noise and claim the smallest RMS.  Instead, certain polynomial
attributes are reduced to numbers, then weighted and summed to give each polynomial its own relative “score”.  The
polynomial that ranks highest is chosen as the optimal trend function, and in the unlikely event that multiple functions
receive the same score, the least-complicated polynomial is selected.  For example, minimum RMS fit is heavily weighted
in the scoring because it is considered an important attribute, but other attributes consider the shape of the remaining
residual signal, the amount of data rejected on the extremities of a pass, the quantity of single-point normal points, and
total number of rejected normal points for each polynomial.  A more complicated matter is determining the relative weights
between these attributes, which has been investigated only to the point that the software is autonomously functional, but
not necessarily optimal.

16.  Other Features

The GNP-2 source code is considerate of FORTRAN 77 standards to facilitate cross-platform compatibility.
Statements longer than 72 characters, extended precision (REAL*16) variables, antiquated FORTRAN IV constructs, and
non-standard characters present in GNP-1 were eliminated.  GNP-2 also adds over 700 meaningful comment statements, and
most subroutines are now well documented.  Place holders exist for alternate robust weight functions, and extensive
debugging features can be activated by the user, including the capability to graph data at various stages of preprocessing.

D.  GNP-2 Validation

17.  Normal Point Val idat ion

Although this paper emphasizes the theory and operational improvements to the GNP normal point process, a
cursory assessment of the performance of the GNP-2 product is also warranted.  GNP-2 normal points are validated by
comparing the GNP-2 normal point product to a long arc SLR solution based on GNP-1 normal points, and by comparison
against the GNP-1 normal points themselves.  The high fidelity orbit archives used for this purpose were supplied by the
Electro-Optics Technology Branch of the Naval Research Laboratory (NRL Code 8123) under the direction of Dr. G.
Charmaine Gilbreath, with the assistance of Mark Davis of ATSC.  In virtually all cases, the good GNP-1 and GNP-2 normal



points appear as identical.  Occasionally, GNP-1 and GNP-2 normal points disagree at the centimeter level due to a different
full-rate measurement chosen as the basis for the normal point bin.

As GNP-2 was designed to alleviate manual editing of noisy GPS data, a survey of all available GPS-35 passes
between June 1, 1998 and July 31, 1998 were compared with NRL-supplied IGS orbits.  During this span, no outliers were
detected and GNP-2 provided 3 fewer normal points than GNP-1.  Detailed analysis of the normal point differences revealed
that GNP-2 failed to form 5 single-point normal points, but gained two normal points having 22 quality full rate data
(comprising a net gain of 14 compressed full-rate observations that the total normal point count does not reflect).  These
differences occur because GNP-1 cannot always reliably span a trend function across very large data outages (approaching
one hour), so GNP-2 subdivides the pass into segments when data outages exceed 22 minutes.  Some of these sub-divided
pass segments have fewer than the minimum number of observations required to perform trend analysis, which suppresses
the formation of normal points in these sparse arcs.

Normal points for sixteen passes of GFZ-1 spanning May 13, 1998 to May 22, 1998 were also reconstructed from
archived full-rate data submitted by five stations.  These were compared with the GNP-1 normal points, full rate data, and an
NRL-supplied orbit.  Although the orbit is not as good (making it difficult to clearly categorize acceptable and unacceptable
normal points), the 446 normal points generated were nearly identical.

18.  Removal of Outliers

Rigorous validation of autonomous data screening was conducted on several hundred SLR passes using predicted
IRV orbits of various (usually poor) quality.  Some 80 worse-case passes were especially scrutinized during periods where
the GNP-1 had been known to produce erroneous normal points and where the full-rate data were available at the CDDIS
archive.  Using identical data, GNP-2 suppressed all the bad normal points generated by GNP-1 (see Table 2, Figure 1).

The four targets in Table 2 produced the greatest number of bad normal points for the station under analysis
(Moblas 6, 7110).  Except for Fizeau, which is the noisiest of the four satellites presented, the GNP-2 process produced
more quality normal points than GNP-1 and generated no outliers.  In a few cases where GNP-2 failed to make a quality
normal point (compared to GNP-1), these points resided in the sparse, sub-divided passes discussed earlier.

 Although beyond the scope of this paper, independent validation campaigns have been conducted.  Detailed
analyses on at least 48 passes by Brion Conklin of ATSC were instrumental in quality assessment of GNP-2, and expanded
analyses continue at the time of this writing.  Julie Horvath of ATSC has been operating experimental versions of GNP-2
for several months as part of the manual qualification of GPS tracking.  This work has provided the many case studies that
rendered improvements to the GNP process.

19.  Recommendations for the Future

The GNP-2 analyses show no statistically significant range difference between the GNP-2 and GNP-1 normal
points estimates, and the adopted tuning constants suggested by Holland and Welsch (1977) provide a high level of
asymptotic efficiency with a standard normal distribution. More recent discussions in the literature (Sinclair, 1992;
Sinclair, 1995b) have advocated accounting for small differences between the mode and the mean of the return distribution.
This is accomplished with a highly trimmed Gaussian distribution (or rather its “peak-finding” approximation).  It i s
possible that other robust estimators might adequately compensate for such distributional skewness, provided the tracking
density is sufficient.

In both GNP-1 and GNP-2, one occasionally sees a pass where the modified short-arc DC is unable to converge
satisfactorily, so that the remaining signal must be removed solely with the bias function.  Improving the IRV models and
abandoning the finite-difference partial derivative approximation would likely reduce the number cases in which this
occurs.  Bias analysis in RTN space is likely to be especially advantageous and may be eventually implemented in future
versions of the normal point processor.

20.  Summary

The GNP-2 normal point processor is a fully operational software package that has undergone various levels of
benchmarking, and its release is expected into the public domain in the near term pending final reviews.  This paper
presents a cursory theoretical foundation with supporting references for potential users, and cites specific operational
changes from its predecessor, GNP-1.  Some test cases are presented which are part of a complete authentication effort



underway by several interested individuals and agencies.  The GNP-2 process represents design trade-offs made in the face of
certain constraints both mandatory and artificially imposed, but nevertheless presents a measurable improvement to the
existing NASA software.
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G.  Figures, Tables, and Illustrations

S a t e l l i t e Normal Point
Bin (sec)

I s o l a t i o n
Window (sec)

GFZ-1 5 60

ZEIA 5 60

ERS 1/2 15 60

FIZEAU 15 90

WESTPAC 15 90

STARLETTE 30 90

AJISAI 30 90

STELLA 30 90

GFO-1 30 90

TOPEX 15 240

LAGEOS-1/2 120 240

ETALON 1/2 300 600

GPS 35/36 300 600

GLONASS 300 600

Table 1.  Isolation Intervals for Leverage Filtering

GNP-1 GNP-2

STARLETTE 175 / 9 179 / 0

LAGEOS-1 578 / 16 585 / 0

LAGEOS-2 313 / 13 315 / 0

FIZEAU 293 / 18 290 / 0

GPS-35 254 / 0 251 / 0

GFZ-1 446/?? 446/??

Table 2.  GNP-2 vs. GNP-1 Benchmarked
Normal Points (Acceptable / Unacceptable)
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Figure 2.  Median Pre-filter Discriminating Data from Noise (LAGEOS-2, Station 7110, 05/17/1998 19:31 UTC)
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Figure 4.  GNP-2 Process Flow


