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In Lunar Laser Ranging, most of the photons detected are due to noise. Unfavorable meteorological
conditions can further deteriorate the return signal, and some data cannot be extracted by the present method
of analysis. Bayesian analysis can help us recover some of that data. Recovering the width of the returning
laser pulse might provide information to improve the error estimate of the normal point. Earth orientation
determination could be done simultaneously with data filtering, providing almost instantaneous Earth
orientation parameters values.

In our investigation, the likelihood function of a generic lunar experiment has been derived. Instead of the
marginalizing the distribution by numerically integrating for the possible range of parameters, the marginal
distributions are obtained using a Markov chain Monte Carlo method. The method has been tested on poor
quality simulated lunar data and demonstrated good recovery of the unknown parameters. Testing of the
method on actual lunar data is underway.

Introduction

The only experiment of the NASA Apollo lunar missions still in operation is the Lunar Laser
Ranging (LLR) experiment. The arrays of reflecting cornercubes that the Apollo astronauts left
on the Moon, along with two other arrays delivered by Soviet spacecraft, do not require power,
and their surfaces have not shown measurable degradation since they were deployed.
Improvements in laser technology and timing devices have increased the accuracy of the range
measurements since 1969, but LLR remains a technically and scientifically challenging
measurement. The wide range of scientific results is summarized in [1].

LLR is the measurement of the round-trip travel time of a photon emitted from an Earth-based
laser. Changes in travel time, that indicate changes in the separation between the transmitter and
the reflector, contain a great deal of information about the Earth-Moon system which can be
retrieved by estimating model parameters. An important signal is the error in predicted Earth
Rotation Parameters (EOP’s). One motivation for better identification of photons returning from
the moon is to better determine these EOP’s. However, the quality and quantity of lunar data
depends strongly on atmospheric conditions and on the Iunar phase. High humidity, atmospheric
turbulence and high background noise can make the detection of lunar returns quite difficult. An
additional incentive is to narrow the data gap in the around new and full Moon. By reducing the
aliasing of observational effects we could also improve our estimate of relevant relativity
parameters.

Data acquisition and the present filtering method

The basic elements of an LLR station are a laser, timing equipment, a telescope, and a computer.
There is a substantial loss of signal due to transmission through the telescope and the atmosphere,
laser beam divergence, the distance to the retroreflector, and array size. When the laser beam
reaches the Moon, it is spread over an area of about 7 km in diameter. This results in a factor of
10*" decrease in the signal, making LLR a single photon detection experiment.

An essential requirement in collecting LLR data is an adequate model of lunar dynamics,
atmospheric refraction, station coordinates and Earth orientation. Based on this model, the
telescope can be accurately pointed to the retroreflector on the Moon. During observing,
depending on the lunar phase (i.e., on the illumination of the lunar disk), and on the atmospheric



conditions, ten to a thousand photons reach the detector. When the reflectors are in the dark, most
of the detected photons are laser returns, but at other times, background photons can overpower
the lunar returns because the retroreflector is illuminated by the Sun. The individual returns are
later analyzed and compressed into normal points, presently of 1 cm precision. Data accuracy is
now at about the 2-3 cm level.

In addition to the hardware spectral and temporal filters the data are processed through a software
filter. The difference between the predicted and measured round-trip times, that is, the residuals,
are calculated using the adopted model. For a perfect measurement and model the residuals
should be zero. Different model errors introduce different signatures into the residuals, but the
noise photons do not follow any pattern. We assume that the mathematical model we are using is
correct except for errors in the predicted EOP’s. During a run this error will cause the residuals of
the returning photons to lie on a straight line of small but unknown slope. The background photon
residuals are randomly distributed. Assuming that the background noise is uniformly distributed,
to identify the lunar return the analyst looks for clumping, that is for significant deviation from a
uniform distribution [2]. In practice, the residuals are binned (usually into 1 nanosecond bins) and
the number of photons expected in a bin is calculated from the total number of detections. The
software examines the bins in pairs, and looks for a significant deviation from this expected
number (the slope and the width of the bins can be adjusted during this process). When it finds
such pairs, all photons in the two bins are identified as lunar returns and compressed into normal
points. The EOP are recovered through another step, using nightly corrections to the apriori EOP
based on the normal points.

This approach breaks down if the number of the total returns is small, or if the noise level is high
(Figure 1); in such cases the program cannot decide, based only on the maximum expected
number of returns, whether the detected photons are from the retroreflector or not. In this case no
photons are identified, and data can be lost. The returning laser pulse is wider than the outgoing
pulse. If we can estimate ilaser pulse width, additional information could be obtained about the
precision of the normal point. At present this is not taken into account, except that the bins are
chosen to be wide enough to contain the smeared pulse. Since the EOP determination can be
improved by increasing the amount of reliable data going into the calculations, and by recovering
the parameters close to real time, the Bayesian approach can help in two ways: It could recover
data deemed unusable before, and it eliminates the extra step of forming the normal points for
EOP determination.

Bayesian analysis

Bayesian analysis requires the user to provide two things: A prior distribution, p(model), which is
a function of all of the model parameters in the problem, and a likelihood function L(model; data)
which describes, in a probabilistic sense, what sort of data we expect to see, given any particular
choice of model parameters [3]. In our case we are interested in estimating the distance D to the
Moon. The prior distribution represents our knowledge (and/or opinions) about the parameters,
prior to taking some data set. It is reasonable to think that, from all the possible parameter values,
some are more likely than others. The prior distribution is a measure of our own ignorance: if we
are very sure of the value of the parameter, it will be sharply peaked, and if we are less sure, it
will be spread out. The prior distribution can vary from user to user for various reasons, including
the fact that different individuals have different prior information. Under many circumstances the
result of a Bayesian analysis may not depend critically on the choice of prior, within a fairly wide
class of priors. In other cases, care must be taken. If the prior is uncertain in such a way that the
results do depend sensitively on the prior, one should carefully investigate the way the results
depend on the prior.
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Figure 1. Poor data: The data are marginal, and the clumping is not obvious. The traditional
filtering method breaks down. However, the ranging crew, with years of experience at lunar

laser ranging, indicated that they think they obtained real laser returns in this run.
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Figure 2. Simulated poor data: Simulated returns are plotted as a function of time. The 8
actual returns can barely be seen on the histogram and are difficult or impossible to see
on the scatter diagram.



The likelihood function L(model; data) is any function that is proportional to the probability of
obtaining certain data, given a model; but it is considered as a function of the model (i.e., the
model parameters), since the data we obtain are fixed. Frequently the particular model is specified
by a particular parameter set. For example, each possible value of D corresponds to a particular
model, and the probability of obtaining a particular set of data (return timings, in the LLR case),
depends upon the value of D. Data that are consistent with a high value of D are more likely to be
obtained if the value of D is high than if it is low, and vice versa.

Expressed in the language of conditional probability,
L(model; data) e p(datalmodel) (D)

The Bayesian prescription tells us that, by Bayes' theorem, the posterior distribution of the
parameter given the data, p(model | data), is proportional to the prior distribution times the
likelihood, with a normalization factor that is just the reciprocal of this product integrated over all
models (i.e., sets of parameters). Thus

p(model/data) < L(model; data) x p(model) 2)
with proportionality factor C given by

Cc'= '[L (model;data) x p(model) 3)

all models

A key characteristic of the Bayesian approach is that the results are conditional on the data that
have been actually observed. That is, the Bayesian analysis does not consider data that might
have been observed but were not. This is displayed by the conditional nature of the posterior
probability distribution. All results of interest can be derived from the posterior distribution.

By integrating out (marginalizing with respect to) parameters that are not of interest, we can
obtain a posterior distribution that is a function of only those parameters that we are interested in.
Such calculations are often the most difficult part of a Bayesian analysis. In many cases it is
relatively staightforward to write down the likelihood function and even to construct the prior.
But the integration of the posterior distribution may be difficult because it may be complex and
not integrable in closed form. To handle this problem, a number of Monte Carlo methods have
been developed in recent years that have proved rather effective. We will follow this strategy in
our discussion after deriving the likehood function.

The Likelihood Function

Because we are counting discrete events that are, for all practical purposes, independent, Poisson
statistics are applicable. Often it is possible, in large-signal situations, to approximate Poisson
statistics by an appropriate normal approximation, but that route is not available here. We must
deal with the Poisson nature of the data at the outset.

We approach the problem of writing down the likelihood by observing that, in a very short

interval of time At, the probability that we detect no photons is
and the probability that we detect a single photon is

(rAt)lexp(-rAt) %= (rAt)exp(-rAt) (@)



where r is the expected rate per unit time of a detection. By making At very small, we can ignore
the probability of two detections in the interval. In our case, the rate varies with time, r = r(t),
because the probability of the arrival of a photon is significantly enhanced during the very short
interval that the range coincides with the actual light-time to the moon.

If the intervals At are disjoint, then the detected events are independent and the likelihood
function is just the product of (4) and (5) over all intervals:

L(model;data) o< exp(—Zr(t)At)[A]JVr(ti)}(At)N (6)

where the data t; are the times when a photon was detected and N is the total number of
detections. Since we only need the likelihood function up to a constant factor, we drop the last
term (At)N and then take the limit as At = O to obtain

L(model ;data) o< exp[- jr(t)dtJ [1r(,) (7)

all time gate open  Ji=N

where the integral is taken over the entire time that the range gate is open (or, equivalently, over
the entire duration of the observation set, noting that the probability of detection r = 0 when the
gate is closed). The same result is obtained when we analyze the problem using the approach
suggested in [4, §2.1].

For our problem, we presume the following form for the rate r(t):

0 if the gate is closed
r(t) =4 roe if the gate is open but the return is not expected

g + 15 if the pulse return is expected

Here, 1y, is the background detection rate per unit time and r, is the signal detection rate per unit
time. We presume that the returning laser pulse is very narrow, i.e., a few hundred picoseconds.
The pulse travels to the moon and is reflected back to the Earth. We do not know the time of
arrival. We have a model for the return time that is dependent on certain parameters. We predict
(on the basis of our model) that at some time t the center of the pulse will arrive; that is the
expected time for the return of the pulse.

By using the “box” function IT(x), which is 1 when -0.5 £ x £ 0.5 and zero otherwise, we can
express a simple model for r(t) as follows:

r(t) = ZH((: -t a)(r, +r,[[-1.)1a,,)) )

where in the ith shot, a; is the length of time the range gate is open, t,; is the mean of the opening
and closing times of the range gate, a,,, is the pulse width, and t,; is the predicted time of the pulse
return. It is assumed that there is an unknown bias in the ephemeris of the Moon, so that there is
an unknown offset in the Moon's distance; and that furthermore, the offset varies in time, linearly
to first order, by an amount that is also unknown. Thus we can write

t,=b+c(t-t,) 9)



where b is the expected pulse return time at time t = t, t,, is the midpoint of the data run, and c is
the slope of the unknown pulse return time. The unknown parameters b and c are to be
determined. The expression for the likelihood function can be simplified by carrying out the
integration and product. We see that

[ r(0ydt = Try, +(m-k/ 2)r,At (10)

where T is the total time that the range gate was open, At is the assumed width of the returning
pulse, k is the number of detections that occured within At/2 of the expected pulse arrival time t,
and m is the number of times that the range gate was open when the pulse return was expected at
time t;. The factor 1/2 in the last term takes into account the fact that the pulse is detected, on
average, halfway through the pulse width, an approximation that is convenient but inessential. We
adopt it for the purpose of this calculation. The product can be written up to a constant factor as

k

N r.
hho| 1+—
8
Thg

where as before N is the total number of detections. The formal unknown parameters in this
problem are the detection rates r,, and r,, and the parameters b and c that describe the expected
time of pulse arrival. Usually one would have a good idea of the errors of the ephemeris, and can
bound b and c. For this investigation we adopted a simple prior that is uniform within a range
typical of what might be expected for the parameter and zero outside that range. For some runs
we took a worst-case stance by assuming that the pulse could return at any time that the range
gate was open and setting the width of the prior accordingly. In actuality, that is far too
pessimistic, but it allowed us to find out just how well we could pin down the actual return time
from the data. We restricted the slope, c, so that over the entire run the expected time of arrival
would not vary by more than 10 nanoseconds. The width of the priors on b and ¢ were variable,
i.e., we allowed ourselves to be very sure or quite ignorant, depending on the run.

Gibbs sampler

Once we have determined the prior and the likelihood, we write down the posterior distribution
(up to a constant factor). We consider some of the parameters, in particular r,, and r,, to be
“nuisance parameters”. That is, we are not much interested in their actual values. We are most
interested in the marginal distributions of b and c, that provide the desired information about the
Moon's orbital motion. The marginal posterior distributions p(bldata) obtain and p(cldata) are
obtained by integrating over all of the other parameters to from the complete posterior
p(b.c.ry,.rldata). We might also be interested in the marginal distributions of r,. During the initial
runs, we assumed that we knew r,, and r, Under ideal conditions this information is actually well
known since the characteristics of the laser pulse and the reflection process on the Moon are well
understood, but can be influenced by weather and other conditions.

Our integration method was the Metropolis subchain Gibbs sampler, as suggested in [5] and
described in [4, §.5.3]. The idea is to generate a Markov chain using the posterior distribution to
generate each next step in the chain. The transition probabilities at each step are prescribed by the
posterior distribution, in such a way that one is more likely to make a transition from a region of
lower posterior probability to one of higher posterior probability than vice versa. Thus, the
Markov chain tends to spend more time in regions of high posterior probability than in regions of
low posterior probability. The Markov chain is defined so that a step is taken first in b, then in c,
then in ry,, then in r,. This process is one iteration of the chain. The process is then repeated
indefinitely, always starting the new step where the old one left off. After each iteration, the



current values of the parameters obtained are tallied separately, to build marginal distributions for
each parameter. It can be shown that under reasonable conditions, the resulting Markov chain
yields marginal distributions that approach the actual marginals in the limit.

Analytical sampling schemes exist only for a narrow class of distributions. However, many
probabilistic schemes are derived for such sampling. We applied Miller's ideas to generate trial
steps from the one-dimensional distributions at each iteration, using a Metropolis-Hastings
approach. The details are described in [4] but the basic procedure is as follows. Suppose we are
ready to generate the next step in a parameter, say b. From a symmetric, but otherwise arbitrary
distribution g(Ab), generate a step Ab. The new trial value of the parameter is b = b + Ab. We
accept or reject this trial value probabilistically based on a simple function of the posterior
distribution at the two points b and b . In particular, with probability

. b ,c,1,,r, | data
(b’ .b) = min] P2 el 1 data)

; (11)
p(b,c,n,r, 1 data)

accept b as the new step; otherwise keep b. Then proceed in the same way with c, Iy, and r, to
complete the iteration.

A key advantage of this method is that it is unnecessary to work with the normalized posterior
probability, since the normalization factor cancels out of the expression for o.

We chose q(Ab) to be uniform over an interval that was typically 10% of the allowed variation in
the particular parameter in question (i.e., the range of the prior for that parameter). This is
somewhat crude, and other choices need to be investigated, but it is remarkable how effective this
choice was. We repeated the sample/accept/reject procedure for the second parameter, then the
third, and so on, until all parameters had been sampled once. At this point the current position of
the point in parameter space is noted, and the whole process is repeated. Typically we would
iterate on the order of 10,000 times to allow the calculation to “burn in”, and then start recording
the data for another 20,000 iterates. Finally, histograms of the later iterates' marginal distributions
were tallied and plotted.

Results

The data used were a set of simulated returns [6]. The data consisted of 14,400 shots, of which
2313 generated detections. Most of those detections were noise; only 8 were actual returns, or
0.34%. This particular set of data was intended to represent data of poor quality. Figure 2 shows
the simulated data.

The slope, c, generated by the simulator was +1.4; we used various starting values to see if the
Gibbs sampler would find the actual slope. Also, we sometimes started the procedure well away
from the actual bias to see whether we would converge on the actual bias (which for these data
was b = +2.35 nanoseconds). We would typically start at positions like + 10 nanoseconds from
the true value; the range gate width was 400 nanoseconds for these data). Our biggest question
was whether we would be able to determine b and c sufficiently well to tell when the returns
came. The likelihood function can be expected to have a very narrow peak near the return.
Would the Metropolis subchain Gibbs sampler find it? We tried a number of runs, first assuming
that we knew the detection probabilities and, later, their marginals as well. The results were quite
gratifying, as can be seen in the figures for one of the later runs.

In the run shown in Figures 1 and 2, we adopted a normal prior for b with mean O and standard
deviation 15 nanosec, cut off at + 30 nanosec and started at b = 0 nanosec. This prior represents



the typical state of knowledge for actual runs. The prior on ¢ was still relatively pessimistic:
uniform for -10 £ ¢ £ 10 and 0 outside that interval. The results were that the median of the
smallest posterior distribution of b was +2.27 nanosec (true value +2.35 nanosec) with the
smallest 80% Bayesian confidence interval (+2.25; 2.35) nanosec. The smallest 95% Bayesian
confidence interval was (+1.89; 2:44) nanosec. Thus, the tails of the distribution are quite heavy
relative to a normal distribution, and the center is very strongly peaked near the true value. This
run is quite typical, and it shows that, despite the fact that the posterior probability is strongly
peaked, the Metropolis subchain Gibbs sampler was able to handle it well and find the peak with
no apparent difficulty.

The posterior distributions of the slope and of the rates are roughly normal, as expected, and not
very interesting, so they will not be discussed here.

Figure 4 shows the 8 actual lunar returns, together with the median line from the Gibbs sampler
calculation. The vertical scale has been blown up substantially; the error bars in the vertical scale
are + 200 picosec. The fit is very satisfactory. Indeed, we have been delighted with the way the
Gibbs sampler homes in on the input answer even when the signal is so small that one can't pick it
out by eye. This is very promising for practical application.

Conclusions

This paper describes a demonstration that a Bayesian approach can be used to analyze the
results of LLR experiments. With poor data and somewhat pessimistic priors, one clearly and
unambiguously picks out the return signal, even though over 99% of the photons detected were
noise. So far we have merely scratched the surface of this project. Real data have not yet been
considered and must be analyzed. It will be particularly interesting to see if and how well this
method can recognize signal where the previous method cannot. We also need to investigate
methods of improving the Gibbs sampler, e.g., convergence criteria and methods of deciding
ideal step sizes for trial steps.
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Figure 3. Posterior marginal distribution for the bias b that represents the expected
return of the photons from the laser at time t,. It is strongly peaked near the true
value; 80% of the posterior probability is contained within an interval of 0.1 nano-
seconds, and 95% within an interval of 0.55 nanoseconds.
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Figure 4. The eight actual returns are plotted together with the median line
from the marginal distributions of b and c. Error bars indicate the uncertainty
in return time.



