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In this paper equations have been derived for making order of magnitude estimates of the 
thermal gradients in a hollow Beryllium retroreflector due to absorption of solar radiation. The 
equations show the dependence on factors such as the area, thickness, solar absorptivity, 
conductivity, and emissivity of the reflecting plates. The performance of the retroreflector can be 
degraded by thermal warping of the plates or changes in the dihedral angles between the 
reflecting plates as a result of differential expansion and contraction. The dihedral angles could 
also change due to failure of the adhesive in the joints between the plates. However, that is not 
studied in this paper. The two cases that have been studied are conduction through the plate and 
conduction along the plate. 
 
Because of the high thermal conductivity of  Beryllium the temperature difference between 
different parts of the retroreflector will be small (a fraction of a degree in the cases that have 
been studied). For the purpose of computing the thermal radiation from different plates the 
retroreflector is considered to be isothermal. 
 
1. Conduction through the plate. 
 
If we have a plate in free space that is subjected to solar radiation on one side, the side facing the 
sun will be warmer than the side facing empty space. The thermal expansion of the side facing 
the sun will be greater than the thermal expansion on the back side. This will result in the side 
facing the sun being slightly convex and the side facing empty space being slightly concave. The 
objective of this analysis is to calculate the amount of buckling of the plate in order to see if it 
will cause a significant distortion of the wavefront reflected from the surface. 
 
Suppose we have a square plate of area l x l and thickness w. The thermal parameters are 
 
α = solar absorptivity 
ε1  = emissivity of the front surface 
ε2  = emissivity of the back surface 
S = solar constant = 1412.5 Watts/sq meter 
k = thermal conductivity of Beryllium = 225 Watts/m-°K 
c = linear expansion coefficient of Beryllium = 11.3x10−6K −1 
σ = Stefan Boltzman constant = 5.6697x10−8Wm−2K −4  
 
The emissivity of beryllium as a function of temperature is 



T (K)       ε 
 
 300 .05 
 800 .20 
1100 .41 
1200 .49 
1300 .57 
1400 .67 
 
For generality we can define a parameter f as the fraction of the solar radiation that is conducted 
through the plate. If we consider just a single plate not connected to the other reflecting plates the 
fraction f is 
 
 f = ε2

ε1 +ε 2
         (1) 

 
This assumes that the front and back of the plate are at nearly the same temperature. If the three 
plates in a retroreflector are subjected to the same amount of solar radiation and are at the same 
average temperature, this analysis should give a reasonably accurate value of the heat flow 
through the plate. The solar energy absorbed by the plate is αSA  where A = l x l is the area of the 
plate. The basic equation for conduction is 
 
 ˙ Q = kΔtA

L
         (2) 

 
where ˙ Q  is the heat flow Δt  is the temperature difference, A is the cross sectional area along the 
heat flow and L is the length over which the heat flows. 
 
The heat flow through the plate is related to the temperature difference ΔT  by the equation 
 
 fαSA = kΔTA

w
         (3) 

 
Solving equation (3) for ΔT  gives 
 
 ΔT = fαSw

k
         (4) 

 
The temperature difference will result in  differential expansion Δl  between the front and back 
surfaces given by 
 
 Δl = clΔt          (5) 
 
Substituting the expression for Δt  from equation (4) gives 
 



 Δl = clfαSw
k

         (6) 

 
The differential expansion will cause the plate to deform into a curved shape. A square plate will 
deform into a somewhat complicated shape. A circular plate should deform into a spherical cap 
with a certain radius of curvature R. A bar would deform into an arc of a circle with some radius 
of curvature R. 
 
For the purpose of this order of magnitude calculation, the exact shape of the plate will be 
neglected. We will assume that the plate forms some curved shape whose outer surface is of 
length l and whose inner surface is of length l − Δl . The arc lengths of the outer and inner 
surfaces are assumed to be 
 
 l = Rθ           (7) 
 
and 
 
 l − Δl = (R − w)θ         (8) 
 
where R is the radius of curvature of the plate and θ is the central angle. 
 
The radius of curvature can be calculated from equations (7) and (8). Substituting equation (7) 
into equation (8) gives 
 
 −Δl = −wθ          (9) 
 
from which we have 
 
 θ =

Δl
w

          (10) 

 
Substituting θ =

l
R

 from equation (7) into equation (10) and solving for R  gives 

 
 R = l w

Δl
         (11) 

 
 
Solving for θ by substituting equation (6) into equation (10) we have 
 
 θ =

Δl
w
=
clfαSw
wk

=
clfαS
k

       (12) 

 
Suppose one end of the plate is fixed (attached to another plate). What is the displacement d of 
the other end of the plate? The displacement is given by 
 



 d = R 1− cos θ( )( ) ≈ R 1− 1 − θ
2
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Substituting equations (10) and (11) into equation (13) gives 
 

 d =
1
2
l w
Δl

Δl
w

⎛ 
⎝ 

⎞ 
⎠ 

2

=
l
2
Δl
w

       (14) 

 
Substituting equation (6) into equation (14) gives the final result 
 

 d = lclfαSw
2wk

=
cl2 fαS
2k

       (15)  

 
We can put some numbers in to see whether the deflection of the plate is significant. Let us take 
.5 for the solar absorptivity of Beryllium. Let us assume the emissivity of the front and back 
faces is the same. From equation (1) we have .5 for the fraction f. For a 2 inch cube corner the 
plates are 1.4 x 1.4 x .12 inches or .035 x .035 x .003 meters. The other parameters are given at 
the beginning of this paper. Putting the numbers into equation (15) gives a deflection of about 
.0108 microns. This is small compared to the wavelength of .5 microns. Therefor the curvature 
of the plate due to conduction from the back to the front is not a problem. 
 
It is interesting to calculate some of the intermediate quantities. From equation (4) the 
temperature difference across the plate is .0047 degrees C. From equation (5) the differential 
expansion is .00186 microns. From equation (12) the angle θ is .62 microradians. From equation 
(11) the radius of curvature is 56,451 meters. Putting the values of R and θ into equation (13) 
gives .0108 microns the same as using equation (15). 
 
We should note that the deflection is proportional to the square of the length l of the sides of the 
plate and is independent of the width w which cancels during the derivation. For large plates the 
curvature could become a problem because of the dependence on the square of the length of the 
sides. 
 
2. Conduction along a plate. 
 
For generality let us again define a constant f as the fraction of the solar heat conducted along the 
plate. If all the plates are being illuminated equally by the sun, the average temperature should be 
the same on all of the plates so that no heat is conducted from one plate to another plate. In this 
case the fraction f of the energy conducted along the plate should be nearly 0. 
 
If only one of the plates is solar illuminated, that heat will be conducted to the other plates so that 
the temperature is almost the same on each plate. The heat will be radiated almost equally from 
all three plates. Approximately 2/3 of the heat absorbed by the plate that is solar illuminated will 
be conducted to the other plates, so f  should be approximately 2/3. 
 



If two plates are solar illuminated approximately 1/3 of the heat on each illuminated plate will be 
conducted to the third plate. 
 
The solar radiation will be absorbed all along the plate so that the heat flow will be different at 
different parts of the plate. For the purposes of this order of magnitude calculation we will 
assume that the heat is conducted from the center of one plate to the center of another plate 
which is a distance l. In other words the calculation is the same as if the heat were conducted 
from one side of the plate to the other side. 
 
Using equation (2), the heat absorbed by the plate is related to the temperature difference along 
the length of the plate by the equation 
 
 fαSl2 = kΔtlw

l
        (16) 

 
Solving equation (16) for the temperature difference Δt  we have 
 

 Δt = fαSl2

kw
         (17) 

 
The linear differential expansion d of the plate is 
 
 d = clΔt          (18) 
 
Substituting equation (17) into equation (18) gives 
 

 d = cfαSl3

kw
         (19) 

 
Suppose we take α = .5, f = .5, l = .035 m, and w = .003 m. From equation (17) the temperature 
difference is .64 degrees C. Using equation (19) we have a differential expansion of d = .25 
microns. This is half a wavelength if the wavelength is .5 microns. If the expansion of one of the 
plates by this amount changes the dihedral angles by a comparable amount this will cause a 
significant distortion of the diffraction pattern. 
 
The reflectivity of Beryllium is about 50 percent which would not be satisfactory for a 
retroreflector. The front faces will have to be coated with some other highly reflective metal such 
as aluminum or silver. Gold would not be suitable because its reflectivity drops off significantly 
at wavelengths shorter than about .7 microns. This gives poor reflectivity at 532 nm. Gold also 
has a solar absorptivity of about .3 as a result of the poor reflectivity at short wavelengths. 
Aluminum has a solar absorptivity of .12 which is much better than Beryllium. However, silver 
has a solar absorptivity of only .07 and a reflectivity of about 93 percent. Silver would probably 
be the best choice for a reflective coating both from the point of view of good reflectivity at 532 
nm and low solar absorptivity. 
 



Suppose we have α = .07 with the other parameters the same as the previous calculations. From 
equation (17) the temperature difference would be .09 degrees C. From either equation (18) or 
(19) the differential expansion is .035 microns. For a wavelength of .532 microns this is .066 
wavelengths or 1/15 of a wave. This would be acceptable. However, this is only an order of 
magnitude calculation. 
 
Note that the expansion of the plate is proportional to the cube of the length of a side. This 
assumes the width w of the plate is constant. If the width w is proportional to the length l then the 
expansion is proportional to the square of the length of a side. This is the same dependence as for 
conduction through the plate as shown in equation (15). 
 
Since the expansion of the plate computed from equation (19) appears to be just below what is 
acceptable, it may not be feasible to use cubes larger than about 2 inches unless some solution 
can be found to the problem of differential heating of the plates by solar radiation. I do not know 
of any reflecting surfaces with a solar absorptivity less than that of silver. Recessing the cubes 
would reduce the angles over which there is direct solar heating but also decrease the viewing 
angle for laser ranging. If there is some way to filter out some of the solar energy while allowing 
the laser wavelength to pass that would also help. However, that would also restrict the 
wavelengths that can be used for laser ranging. 
 
Since the calculation of the expansion of the plates is only approximate and gives a value that is 
just below what is acceptable, further analysis and/or testing is needed to verify that thermal 
effects will not cause significant distortion of the diffraction pattern. 
 
3. Temperature of the retroreflector array. 
 
The solar energy absorbed by the cube corner depends on the ratio of the absorptivity to the 
emissivity (the α ε  ratio). Suppose the solar absorptivity of each of the reflecting surfaces of the 
retroreflector is .07. At normal incidence on a retroreflector, the solar radiation is reflected from 
all three faces and is retroreflected. If the reflectivity is .93 on each reflection, the total 
reflectivity is .93 x .93 x .93 = .8 for all three reflections. The effective solar absorptivity is .2 at 
normal incidence. 
 
Suppose it is desired to keep the temperature of the retroreflector array at about 300 deg K. What 
emissivity would the back surface of the array need to have? Let us assume the area of the back 
of the array is the same as the area of the front of the array. The basic equation for the 
temperature is 
 
 αSA = εσAT 4          (20) 
 
Solving this for the emissivity gives 
 
 ε =

αS
σT 4          (21) 

 



If the effective absorptivity on the front is .2, the emissivity of the back of the array needs to be 
.61. This should be possible. Another possibility would be to have a larger surface on the back 
such as by using some kind of fins or a hemispherical surface since the area is twice the cross 
section. 
 
If the solar energy is incident of the back of the array, the α ε  ratio needs to be less than .2/.6 = 
1/3 in order to keep the array around 300 deg K. Since silver has a low emissivity of about .02, 
the front of the array will not be able to get rid of much heat collected on the back surface. The 
back surface will have to radiate most of whatever solar heat is collected. 
 
In principle the backs of the retroreflectors could be given some kind of low α ε  coating. 
However, there would still be the problem of uneven heating of the plates of the cube corners. 
This is marginal for solar radiation hitting the front of the retroreflector. It would be better to 
have some kind of heat shield to provide a more isothermal environment on the back of the array 
and prevent uneven heating of the plates. In this way the performance should be good whenever 
the sun is not hitting the front of the array. The heat shield would not have to be heavy. All it has 
to do is have enough conductivity to reduce uneven heating of the back surfaces of the 
retroreflectors. The back surface of the cubes should be radiatively coupled to the heat shield 
using a high emittance surface on the back of the cubes and on the inside of the heat shield. 
 
4. The joints. 
 
No analysis has been done of possible thermal distortion of, or damage to the joints. Probably the 
only way to be sure the joints are not a problem is with thermal vacuum testing to make sure that 
the dihedral angles are not changed temporarily or permanently by thermal cycling. 
 
5. Conclusions. 
 
The use of a hollow cube corner for laser ranging appears to be feasible from these calculations 
as long as there is good thermal control and the cube is not too large. Since these calculations are 
only order of magnitude and the results are just under what is acceptable, further analysis and/or 
testing will be needed to confirm the tentative conclusions. Also, the stability of the joints under 
thermal cycling which is not considered in this report needs to be determined. The reflecting 
surfaces will need to be coated with a good reflecting material such as silver to improve the 
signal strength for laser ranging and reduce thermal distortion of the cube due to absorption of 
solar radiation. A heat shield with a low a/e ratio should be included on the back of the array to 
avoid excessive temperatures when the array is sunlit and reduce uneven heating of the back 
surface of the cube corners by solar radiation. 


